poj3744 (概率DP+矩阵快速幂)
http://poj.org/problem?id=3744
#include<stdio.h>
#include<algorithm>
#include<vector>
using namespace std; typedef long long ll; typedef vector<double>vec;
typedef vector<vec >mat;
int n;
double p,T1,T2,pT1,pT2;
mat mul(mat &A , mat &B)
{
mat C(A.size(),vec(B.size())); for(int i= ; i<A.size() ; i++)
{
for(int k= ; k<B.size() ; k++)
{
if(A[i][k]==) continue;
for(int j= ; j<B[].size() ; j++)
{
if(B[k][j]==) continue;
C[i][j]=(C[i][j] + A[i][k]*B[k][j]);
}
}
}
return C;
}
mat qpow(mat A,ll n)
{
mat B(A.size(),vec(A.size()));
for(int i= ; i<A.size() ; i++)
B[i][i]=;
while(n>)
{
if(n&)
B=mul(B,A);
A=mul(A,A);
n>>=;
}
return B;
}
double so(int len)
{
mat A(,vec());
A[][]=p;A[][]=-p;
A[][]=;A[][]=;
A = qpow(A,len-);
double T=A[][]*p+A[][];
return T;
}
int x[];
bool vis[];
double dp[];
int main()
{
while(~scanf("%d%lf",&n,&p))
{
int Max=-;
for(int i= ; i<=n ; i++)
scanf("%d",&x[i]),vis[x[i]]=,Max=max(Max,x[i]);
dp[]=;
dp[]=p;
if(vis[]) dp[]=;
if(vis[]) dp[]=;
for(int i= ; i<=Max+ ; i++)
{ dp[i]=dp[i-]*p + dp[i-]*(-p);
if(vis[i]) dp[i]=;
}
printf("%0.7f\n",dp[Max+]); }
}
poj3744 (概率DP+矩阵快速幂)的更多相关文章
- poj4474 Scout YYF I(概率dp+矩阵快速幂)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4100 Accepted: 1051 Descr ...
- Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)
题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...
- POJ 3744 Scout YYF I 概率dp+矩阵快速幂
题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...
- POJ3744 Scout YYF I 概率DP+矩阵快速幂
http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...
- poj 3744 概率dp+矩阵快速幂
题意:在一条布满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...
- POJ 3744 Scout YYF I (概率dp+矩阵快速幂)
题意: 一条路上,给出n地雷的位置,人起始位置在1,向前走一步的概率p,走两步的概率1-p,踩到地雷就死了,求安全通过这条路的概率. 分析: 如果不考虑地雷的情况,dp[i],表示到达i位置的概率,d ...
- poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)
F - Scout YYF I Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- bnuoj 34985 Elegant String DP+矩阵快速幂
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...
- HDU 5434 Peace small elephant 状压dp+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: ...
随机推荐
- win
/*-------------------------------------------------------------- HelloMsg.c -- Displays "Hello, ...
- SpringBoot(十) -- Spring Data
一.Spring Data简介 Spring Data 项目的目的是为了简化构建基于 Spring 框架应用的数据访问技术,包括非关系数据库.Map-Reduce 框架.云数据服务等等:另外也包含对关 ...
- 最新版 Mysql 8.0.16 创建用户权限更新回收权限
1.创建用户语法 : create user ‘写你自己的用户名’@‘写你需要哪个IP连接你的用户(%表示所有)’ identified by ‘密码’; 案例: create user ‘wangx ...
- js 判断是不是数字||判断字符串是不是数字(正则表达式)
js使用正则表达式判断对象是不是数字,或者字符串是不是数字,或者是不是数字类型 //判断是不是一个数字 或者 一个字符串里全是数字 isNumber (value) { if (value === u ...
- luogu 3426题解 (KMP)
题面 Byteasar 想在墙上涂一段很长的字符,他为了做这件事从字符的前面一段中截取了一段作为模版. 然后将模版重复喷涂到相应的位置后就得到了他想要的字符序列.一个字符可以被喷涂很多次,但是一个位置 ...
- 【题解】Cow Relays
题目大意 求在一张有\(m\)条边无向连通图中,点\(s\)到点\(t\)的经过\(k\)条边的最短路(\(1 \leq m \leq 100\),\(1 \leq k \leq 10^6\)). ...
- 【推荐系统】知乎live入门5.常用技能与日常工作
参考链接 [推荐系统]知乎live入门 目录 1. 实习与求职 2. 推荐算法职责 3. 解构算法 4. 参考资料 5. 其他强关联岗位 6. 工作模型和日常工作 7. 2017年相关论文 8. 找工 ...
- linux基础开发软件安装 - java相关
1.linux在线安装mysql:转自 https://www.cnblogs.com/bigbrotherer/p/7241845.html ,写的很好,简单易用. 开启远程访问:转 https:/ ...
- <input>/<textarea>输入框设置默认提示文字(隐藏式)
html代码如下: <tr> <td>签 名:</td> <td><input type="text" nam ...
- 2018-11-19-visualStudio-无法登陆
title author date CreateTime categories visualStudio 无法登陆 lindexi 2018-11-19 15:24:15 +0800 2018-2-1 ...