http://poj.org/problem?id=3744

题意:在一条铺满地雷的路上,你现在的起点在1处。在N个点处布有地雷,1<=N<=10。地雷点的坐标范围:[1,100000000].
每次前进p的概率前进一步,1-p的概率前进2步。问顺利通过这条路的概率。就是不要走到有地雷的地方。
 
分析:
安全通过就是走到最右的地雷坐标+1 的位置(安全)
有一道显然的转移方程 dp[i] = dp[i-1]*p + dp[i-2]*(1-p) ;   如果有地雷dp[i] 就为0,这样一直的递推下去可是我们发现地雷的坐标真的太大了,递推超时;然后我们在观察这个式子可以发现这是斐波那契数列,可以想到用矩阵快速幂解决 ,但是如果是出现了地雷,dp[i]就会改变,这样就无法使用快速幂。
N个有地雷的点的坐标为 x[1],x[2],x[3]```````x[N].
我们把道路分成N段:
1~x[1];
x[1]+1~x[2];
x[2]+1~x[3];
`
`
`
x[N-1]+1~x[N].
 
这样每一段只有一个地雷。我们只要求得通过每一段的概率。乘法原理相乘就是答案。
对于每一段,通过该段的概率等于1-踩到该段终点的地雷的概率。
 
就比如第一段 1~x[1].  通过该段其实就相当于是到达x[1]+1点。那么p[x[1]+1]=1-p[x[1]].
但是这个前提是p[1]=1,即起点的概率等于1.对于后面的段我们也是一样的假设,这样就乘起来就是答案了。
 (可以理解为我走到那个位置炸了了,那安全的概率肯定是1-不满足的概率啊)
对于每一段的概率的求法可以通过矩阵乘法快速求出来。
#include<stdio.h>
#include<algorithm>
#include<vector>
using namespace std; typedef long long ll; typedef vector<double>vec;
typedef vector<vec >mat;
int n;
double p,T1,T2,pT1,pT2;
mat mul(mat &A , mat &B)
{
mat C(A.size(),vec(B.size())); for(int i= ; i<A.size() ; i++)
{
for(int k= ; k<B.size() ; k++)
{
if(A[i][k]==) continue;
for(int j= ; j<B[].size() ; j++)
{
if(B[k][j]==) continue;
C[i][j]=(C[i][j] + A[i][k]*B[k][j]);
}
}
}
return C;
}
mat qpow(mat A,ll n)
{
mat B(A.size(),vec(A.size()));
for(int i= ; i<A.size() ; i++)
B[i][i]=;
while(n>)
{
if(n&)
B=mul(B,A);
A=mul(A,A);
n>>=;
}
return B;
}
double so(int len)
{
mat A(,vec());
A[][]=p;A[][]=-p;
A[][]=;A[][]=;
A = qpow(A,len-);
double T=A[][]*p+A[][];
return T;
}
int x[];
bool vis[];
double dp[];
int main()
{
while(~scanf("%d%lf",&n,&p))
{
int Max=-;
for(int i= ; i<=n ; i++)
scanf("%d",&x[i]),vis[x[i]]=,Max=max(Max,x[i]);
dp[]=;
dp[]=p;
if(vis[]) dp[]=;
if(vis[]) dp[]=;
for(int i= ; i<=Max+ ; i++)
{ dp[i]=dp[i-]*p + dp[i-]*(-p);
if(vis[i]) dp[i]=;
}
printf("%0.7f\n",dp[Max+]); }
}

poj3744 (概率DP+矩阵快速幂)的更多相关文章

  1. poj4474 Scout YYF I(概率dp+矩阵快速幂)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Descr ...

  2. Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)

    题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...

  3. POJ 3744 Scout YYF I 概率dp+矩阵快速幂

    题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...

  4. POJ3744 Scout YYF I 概率DP+矩阵快速幂

    http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...

  5. poj 3744 概率dp+矩阵快速幂

    题意:在一条布满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...

  6. POJ 3744 Scout YYF I (概率dp+矩阵快速幂)

    题意: 一条路上,给出n地雷的位置,人起始位置在1,向前走一步的概率p,走两步的概率1-p,踩到地雷就死了,求安全通过这条路的概率. 分析: 如果不考虑地雷的情况,dp[i],表示到达i位置的概率,d ...

  7. poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)

    F - Scout YYF I Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  8. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  9. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

随机推荐

  1. docker--docker架构

    4 docker 架构 Docker uses a client-server architecture. The Docker client talks to the Docker daemon, ...

  2. Netty实战之性能调优与设计模式

    设计模式在Netty 中的应用(回顾): 单例模式要点回顾: 一个类在任何情况下只有一个对象,并提供一个全局访问点. 可延迟创建. 避免线程安全问题. 在我们利用netty自带的容器来管理客户端链接的 ...

  3. spring-data-redis的使用/redis缓存

    1.导入依赖 <properties> <junit.version>4.12</junit.version> <spring.version>4.2. ...

  4. mysql远程命令连接

    #mysql -h 服务器地址 -P 端口 -u账号 -p密码 mysql -uroot -proot

  5. java 中断线程的几种方式 interrupt()

    中断 中断(Interrupt)一个线程意味着在该线程完成任务之前停止其正在进行的一切,有效地中止其当前的操作.线程是死亡.还是等待新的任务或是继续运行至下一步,就取决于这个程序.虽然初次看来它可能显 ...

  6. hadoop编程小技巧(1)---map端聚合

    測试hadoop版本号:2.4  Map端聚合的应用场景:当我们仅仅关心全部数据中的部分数据时,而且数据能够放入内存中. 使用的优点:能够大大减小网络数据的传输量,提高效率: 一般编程思路:在Mapp ...

  7. js+css实现点击回到顶部的效果(最低兼容至ie7)

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  8. C# <T>泛型的使用

    在定义泛型类时,可以对客户端代码能够在实例化类时用于类型参数的类型种类施加限制.如果客户端代码尝试使用某个约束所不允许的类型来实例化类,则会产生编译时错误.这些限制称为约束.约束是使用 where 上 ...

  9. SCRUM REPORT DIRECTORY

    Alpha sprint scrum 1 scrum 2 scrum 3 scrum 4 scrum 5 scrum 6 scrum 7 scrum 8 scrum 9 scrum 10 Beta s ...

  10. 2018-12-25-win10-uwp-显示SVG

    title author date CreateTime categories win10 uwp 显示SVG lindexi 2018-12-25 10:37:5 +0800 2018-2-13 1 ...