HDU-5072 补集转化+容斥原理
题意:给n个数,求满足一下条件的三元组(a,b,c)数量:a,b,c两两互质或者a,b,c两两不互质。
解法:这道题非常巧妙地运用补集转化和容斥原理。首先我们令这n个数为n个点,然后两两之间连边如果是互质连黑色不互质连红色,那么这个图就会变成完全图。那么题目就是要求我们计算这个完全图的同色三角形数量。观察发现同色三角形数量非常难求但是异色三角形数量好求,因为每个异色三角形对应三个点必定有两个点是连接两条异色边的。并且这种关系是一一对应的,那么我们就可以对于每个点求出连接该点的异色边对数,就可以求出与该点相关的异色三角形数量(注意这里用的词是相关,那么一个异色三角形与两个异色点相关所以答案要除以2)。
那么问题就变成怎么快速找到一个点连接的异色边对数呢?很容易想到如果点i的异色边数为e[i]的话,同色边数就是n-e[i]-1,那么对数就是(e[i])*(n-e[i]-1)。但是问题是怎么快速计算e[i]的数量?也就是说对于a[i]怎么快速求出n个数中有几个数与a[i]互质?
这个问题是此题关键。我们用到容斥原理:与一个数a[i]不互质的数数量=至少拥有a[i]的一个质因子数量-至少拥有a[i]的两个质因子数量+至少拥有a[i]的三个质因子数量-至少拥有a[i]的四个质因子数量......。那么我们就先求出mul[i]代表n个数中拥有i因子的数的数量(这里具体是用到状态压缩枚举的办法,具体看代码很好懂),得到mul之后对于a[i]与它不互质的数的个数就是a[i]的质因子组合用利用mul数组计算上诉的容斥原理式子得到。
到这里此题可解了。
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+;
int n,m,a[N],mul[N],e[N];
vector<int> fac[N]; void prework() { //预处理1-100000的因子
for (int i=;i<=;i++) {
int n=i;
for (int j=;j*j<=n;j++) {
if (n%j==) {
fac[i].push_back(j);
while (n%j==) n/=j;
}
}
if (n>) fac[i].push_back(n);
}
} int main()
{
prework();
int T; cin>>T;
while (T--) {
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d",&a[i]);
memset(mul,,sizeof(mul));
memset(e,,sizeof(e));
for (int i=;i<=n;i++) {
int ALL=<<fac[a[i]].size();
for (int j=;j<ALL;j++) {
int sum=;
for (int k=;k<fac[a[i]].size();k++)
if (j&(<<k)) sum=sum*fac[a[i]][k];
mul[sum]++; //代表是sum倍数的a[i]的个数++
}
}
for (int i=;i<=n;i++) {
int ALL=<<fac[a[i]].size();
for (int j=;j<ALL;j++) {
int sum=,sig=-;
for (int k=;k<fac[a[i]].size();k++)
if (j&(<<k)) sum=sum*fac[a[i]][k],sig*=-;
e[i]+=sig*mul[sum]; //容斥原理求与a[i]不互质的数个数(包括自己)
}
e[i]=n-e[i]; //补集就是与a[i]互质的数个数(不包括自己)
if (a[i]==) e[i]=n-;
} long long ans=,tmp=;
for (int i=n;i>n-;i--) ans=ans*i;
ans=ans/; //计算全集C(n,3) for (int i=;i<=n;i++) tmp+=(long long)(e[i])*(n-e[i]-); //计算异色三角形数量
printf("%lld\n",ans-tmp/);
}
return ;
}
HDU-5072 补集转化+容斥原理的更多相关文章
- ACM学习历程—HDU 5072 Coprime(容斥原理)
Description There are n people standing in a line. Each of them has a unique id number. Now the Ragn ...
- 容斥原理+补集转化+MinMax容斥
容斥原理的思想大家都应该挺熟悉的,然后补集转化其实就是容斥原理的一种应用. 一篇讲容斥的博文https://www.cnblogs.com/gzy-cjoier/p/9686787.html 当我们遇 ...
- 概述「并查集补集转化」模型&&luoguP1330 封锁阳光大学
奇妙的模型转化以及并查集思想 模型概述 有图$G=(V,E)$,初始所有点为白色,现在要将其中一些点染为黑色,要求染色后满足:$∀(u,v)∈E$,$∃col_u!=col_v$.求最小染色点数. 题 ...
- HDU 5072 Coprime (单色三角形+容斥原理)
题目链接:Coprime pid=5072"> 题面: Coprime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- hdu 5072 计数+容斥原理
/* 题意: 给出n个数(n<100000), 每个数都不大于100000,数字不会有重复.现在随意抽出3个,问三个彼此互质 或者 三个彼此不互质的数目有多少. 思路: 这道题反着想,就是三个数 ...
- hdu 5072 Coprime 容斥原理
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...
- hdu 5072 Coprime(同色三角形+容斥)
pid=5072">http://acm.hdu.edu.cn/showproblem.php?pid=5072 单色三角形模型 现场赛和队友想了3个小时,最后发现想跑偏了.感觉好可惜 ...
- HDU 2204Eddy's爱好(容斥原理)
Eddy's爱好 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- hdu 5072 Coprime
http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出 n 个互不相同的数,求满足以下条件的三元无序组的个数:要么两两互质要么两两不互质. 思路:根据 ...
随机推荐
- 【Leetcode周赛】从contest-71开始。(一般是10个contest写一篇文章)
Contest 71 () Contest 72 () Contest 73 (2019年1月30日模拟) 链接:https://leetcode.com/contest/weekly-contest ...
- Go 数组(2)
把同样类型的一个数组赋值给另外一个数组 package main; import "fmt"; func main() { ] string ; array2:=[]string ...
- Go 查找
sort.SearchInts(a []int, b int) 从数组a中查找b,前提是a必须有序 sort.SearchFloats(a []float64, b float64) 从数组a中查找b ...
- 安装RabbitMQ服务器及基本配置
RabbitMQ是一个在AMQP协议标准基础上完整的,可复用的企业消息系统.它遵循Mozilla Public License开源协议,采用 Erlang 实现的工业级的消息队列(MQ)服务器,Rab ...
- Heartbeat安装及配置
1.yum源安装 yum -y install heartbeat 更新yum源 yum install epel-release -y yum源有问题,改用下载rpm包安装 2.rpm安装 下载rp ...
- Android SDK的下载与安装*(PC版)
Android SDK的下载与安装 一.Android SDK简介下载地址:https://www.androiddevtools.cn/ 将下载后的安装包解压到相应的目录下,如下图: 三.安装A ...
- 提高wifi速度的设置办法
系列的提高wifi速度的设置办法 在DNS一栏有你们家的地址,在你们家的地址前输入“114.114.114.114”并以“,”结尾(注意:要用英文输入法哦.) 设置完后点击左上角的“无线局域网”回到初 ...
- 各大漏洞平台及SRC的区别和如何批量刷漏洞
批量刷漏洞: 01刷指纹->02刷原始漏洞->03刷CMS->04刷指定政府.教育->05刷众测平台->06刷SRC->07刷国内外.活动 搜索引擎: 百度.goo ...
- python使用开源图片识别第三方库tesseract
详细安装博客:https://blog.csdn.net/luanyongli/article/details/81385284 第一步tesseract-ocr的安装如果不会请参照:https:// ...
- LINUX时间服务器搭建
一. 因 为工作需要,偶需要将搭建一个NTP服务器来进行时间同步的测试,在公司里一直以为非常的难搭建,也是刚刚工作的缘故,就等正导师给帮着弄一台服务器,结 果导师给了我一个系统叫Fedora,让我偶自 ...