传送门

\(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\)

\(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\(x_i\),那么答案为\(n!\sum\limits_{d|x_i,\sum x_i=n} \prod \frac{1}{x_i!}\),这个显然可以暴力背包生成函数,因为有\(d|x_i\)的限制,那么可以套用单位根反演,单个复读机的生成函数为\(\sum_{i=0}^{\infty}[d|i]\frac{x^i}{i!}\),也就是

\[\frac{1}{d}\sum_{i=0}^{\infty}\sum_{j=0}^{d-1}\omega_{d}^{ij}\frac{x^i}{i!}\]\[\frac{1}{d}\sum_{j=0}^{d-1}\sum_{i=0}^{\infty}\frac{\omega_{d}^{ij}x^i}{i!}\]\[\frac{1}{d}\sum_{i=0}^{d-1}e^{\omega_{d}^{i}x}\]

然后求出这个生成函数的\(k\)次方的\(n\)次项系数乘上\(n!\)就好了(注意到\(n!\)会和\(n\)次项中的\(\frac{1}{n!}\)抵消),实现的时候把\(e^x\)看成未知数,枚举\(e^{\omega_{d}^{0}x},e^{\omega_{d}^{1}x},(d=3\)时有\(e^{\omega_{d}^{2}x})\)出现了多少次,然后系数乘上组合数即可(说白了就是二项式定理展开)

代码

uoj #450[集训队作业2018]复读机的更多相关文章

  1. 【UOJ#450】[集训队作业2018] 复读机

    题目链接 题目描述 群里有\(k\)个不同的复读机.为了庆祝平安夜的到来,在接下来的\(n\)秒内,它们每秒钟都会选出一位优秀的复读机进行复读.非常滑稽的是,一个复读机只有总共复读了\(d\)的倍数次 ...

  2. [2018集训队作业][UOJ450] 复读机 [DP+泰勒展开+单位根反演]

    题面 传送门 思路 本文中所有$m$是原题目中的$k$ 首先,这个一看就是$d=1,2,3$数据分治 d=1 不说了,很简单,$m^n$ d=2 先上个$dp$试试 设$dp[i][j]$表示前$i$ ...

  3. UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...

  4. 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)

    [UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...

  5. uoj450 【集训队作业2018】复读机(生成函数,单位根反演)

    uoj450 [集训队作业2018]复读机(生成函数,单位根反演) uoj 题解时间 首先直接搞出单个复读机的生成函数 $ \sum\limits_{ i = 0 }^{ k } [ d | i ] ...

  6. UOJ #449. 【集训队作业2018】喂鸽子

    UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...

  7. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  8. UOJ#418. 【集训队作业2018】三角形

    #418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2= ...

  9. UOJ#422. 【集训队作业2018】小Z的礼物

    #422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...

随机推荐

  1. Python3.X Selenium 自动化测试中如何截图并保存成功

    在selenium for python中主要有三个截图方法,我们挑选其中最常用的一种. 挑最常用的:get_screenshot_as_file() 相关代码如下:(下面的代码可直接复制) # co ...

  2. 大哥带的DOM-XSS进阶eval构造XSS

    0X01源码分析 那么我们可以如何来构造语法呐??已知eval函数可以执行js 最终的输出是eval(this.xss="你提交的参数";) 那我们是不是可以从参数这里构造一个js ...

  3. XSS中的同源和跨域的问题

    学习自https://www.cnblogs.com/-qing-/p/10966047.html 也谈谈同源策略和跨域问题 1 同源策略 所谓同源策略,指的是浏览器对不同源的脚本或者文本的访问方式进 ...

  4. [CSP-S模拟测试]:打表(猜测题意+结论)

    题目传送门(内部题139) 输入格式 第一行两个整数$k,ans$,表示内存地址$A$的位数,以及答案所在的内存地址. 接下来一行$2^k$个整数,分别表示内存地址$0...2^k-1$上的值. 输出 ...

  5. java 手机号/身份证(*)加密隐藏中间某几位几位

    //手机号 保留前3 后4 String phone = "18771632488"; System.out.println(phone.replaceAll("(\\d ...

  6. IDEA配置常见配置

    特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...

  7. 开源EDR(OSSEC)基础篇- 02 -部署环境与安装方式

    https://yq.aliyun.com/articles/683077?spm=a2c4e.11163080.searchblog.9.753c2ec1lRj02l

  8. 如何将redis加入到Windows 服务中

    将redis加入到Windows 服务的方法 原文出自:https://www.cnblogs.com/zoro-zero/p/5761507.html, 本文稍作完善 1.下载zip的Redis,对 ...

  9. leetcode-easy-trees-102. Binary Tree Level Order Traversal-YES

    mycode  98.56% # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x ...

  10. iso-----genisoimage/md5sum命令用法

    命令安装 直接yum安装即可 yum install genisoimage -y 功能说明 可将指定的目录与文件做成ISO 9660格式的映像文件,以供刻录光盘 语法 genisoimage -U ...