题目大意:

给定n m (1≤N≤1e18, 2≤M≤100)

一个魔法水晶可以分裂成连续的m个普通水晶

求用水晶放慢n个位置的方案modulo 1000000007 (1e9+7)

input
4 2
output
5
 
设1为魔法水晶 0为普通水晶
n=4 m=2有5种方案 即
1111、0011、1001、1100、0000
 
得到递推公式
当 i < m 时 dp[ i ] = 1
当 i >= m 时 dp[ i ] = dp[ i-1 ] + dp[ i-m ]
n的范围是1e18 构造矩阵用矩阵快速幂
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define LLINF 0x3f3f3f3f3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
const int N=1e5+;
const int M=;
const int mod=1e9+; LL n,m;
struct MAT {
LL a[M][M];
MAT(){ mem(a,); }
MAT operator*(MAT p) {
MAT res;
for(int i=;i<M;i++)
for(int j=;j<M;j++)
for(int k=;k<M;k++)
res.a[i][j]=(res.a[i][j]+a[i][k]*p.a[k][j])%mod;
return res;
}
};
MAT mod_pow(MAT A,LL x) {
MAT res;
res.a[][]=;
while(x) {
if(x&) res=res*A;
A=A*A; x>>=;
} return res;
} int main()
{
while(~scanf("%I64d%I64d",&n,&m)) {
MAT A,B;
for(int i=;i<m;i++)
A.a[i][i+]=;
A.a[][]=A.a[m-][]=;
B=mod_pow(A,n);
printf("%I64d\n",B.a[][]);
} return ;
}

eduCF#60 D. Magic Gems /// 矩阵快速幂的更多相关文章

  1. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  2. Educational Codeforces Round 60 (Rated for Div. 2) D. Magic Gems(矩阵快速幂)

    题目传送门 题意: 一个魔法水晶可以分裂成m个水晶,求放满n个水晶的方案数(mol1e9+7) 思路: 线性dp,dp[i]=dp[i]+dp[i-m]; 由于n到1e18,所以要用到矩阵快速幂优化 ...

  3. [递推+矩阵快速幂]Codeforces 1117D - Magic Gems

    传送门:Educational Codeforces Round 60 – D   题意: 给定N,M(n <1e18,m <= 100) 一个magic gem可以分裂成M个普通的gem ...

  4. D. Magic Gems(矩阵快速幂 || 无敌杜教)

    https://codeforces.com/contest/1117/problem/D 题解:有一些魔法宝石,魔法宝石可以分成m个普通宝石,每个宝石(包括魔法宝石)占用1个空间,让你求占用n个空间 ...

  5. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...

  6. Educational Codeforces Round 60 D dp + 矩阵快速幂

    https://codeforces.com/contest/1117/problem/D 题意 有n个特殊宝石(n<=1e18),每个特殊宝石可以分解成m个普通宝石(m<=100),问组 ...

  7. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  8. HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表

    2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 ...

  9. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

随机推荐

  1. 从上一个页面跳入新页面时,如何拿URL中的参数

    var url = document.URL; //获取当前页面的url var urlA = url.split('?');//以url中的问号进行分割; var goodscode = urlA[ ...

  2. Linux折腾

    安装了一圈发行版,最后发现还是Fedora最稳定 debian安装后无法启动 openSUSE源不完善 manjaro重启就进不去

  3. c++计算1到100以内的质数

    自考c++实践的时候,有个求计算1-100的质数的问题,没搞出来 由于考试使用的是Dev-C++开发工具,为了下次考试做准备,改用该工具,直接下载安装即可,不会涉及到什么破解等 下载地址:https: ...

  4. Android组件内核之Service内核原理(三)

    阿里P7Android高级架构进阶视频免费学习请点击:https://space.bilibili.com/474380680本篇文章将先从以下三个内容来介绍Service内核原理: [startSe ...

  5. 分布式-技术专区-Redis分布式锁实现-第二步

    再上次篇章中汇集了相关的分布式锁的概念进行控制,接下来我们采用的是注解声明式开发服务方案,进行声明式开发代替编程式开发方案.  1.利用aop实现分布式锁2.只用在方法上加个注解,同时加上了重试机制 ...

  6. 关于solarwinds的一些介绍

    由于是给客户使用,作为运维人员自然是要安装测试一下的. solarwinds是一个付费的监控软件,部署起来很方便,加agent节点也很方便,除了监控主机,还可以监控网络流量,交换机等设备.由于并没有实 ...

  7. java中有几种方法可以实现一个线程?用什么关键字修饰同步方法? stop()和suspend()方法为何不推荐使用?

    有两种实现方法,分别是继承Thread类与实现Runnable接口用synchronized关键字修饰同步方法反对使用stop(),是因为它不安全.它会解除由线程获取的所有锁定,而且如果对象处于一种不 ...

  8. 【Movist Pro】macOS上的绝佳媒体播放器

    Movist Pro是适用于Mac的高性能电影播放器,如果比较流程和界面,则Movist与QuickTime非常相似.因此,采用播放器几乎不会有任何问题.使用Quicktime或FFmpeg解码电影并 ...

  9. Java Http POST/GET 情求

    POST: //返回体 public static final String RESPONCE_BODY = "responceBody"; //URL public static ...

  10. C判断语句

    C 判断 判断结构要求程序员指定一个或多个要评估或测试的条件,以及条件为真时要执行的语句(必需的)和条件为假时要执行的语句(可选的). C 语言把任何非零和非空的值假定为 true,把零或 null ...