luoguP2365 任务安排 斜率优化 + 动态规划
Code:
#include<bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define ll long long
#define x(i) (sumf[i])
#define y(i) (f[i])
#define maxn 1000000
using namespace std;
int n,s,head,tail;
int q[maxn];
ll sumt[maxn],sumf[maxn],f[maxn];
double slope(int i,int j) { return (double)(1.00*(y(i)-y(j)))/(double)(1.00*(x(i)-x(j)));}
int main()
{
// setIO("input");
int i,j;
scanf("%d%d",&n,&s);
for(i=1;i<=n;++i)
{
scanf("%lld%lld",&sumt[i],&sumf[i]);
sumt[i]+=sumt[i-1],sumf[i]+=sumf[i-1];
}
head=tail=0;
for(i=1;i<=n;++i)
{
while(head<tail&&slope(q[head],q[head+1])<=sumt[i]+s)++head;
f[i]=y(q[head])+sumf[i]*sumt[i]+s*sumf[n]-(sumt[i]+s)*x(q[head]);
while(head<tail&&slope(q[tail],i)<slope(q[tail-1],i)) --tail;
q[++tail]=i;
}
printf("%lld\n",f[n]);
return 0;
}
luoguP2365 任务安排 斜率优化 + 动态规划的更多相关文章
- [bzoj2726][SDOI2012]任务安排 ——斜率优化,动态规划,二分,代价提前计算
题解 本题的状态很容易设计: f[i] 为到第i个物件的最小代价. 但是方程不容易设计,因为有"后效性" 有两种方法解决: 1)倒过来设计动态规划,典型的,可以设计这样的方程: d ...
- BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]
2726: [SDOI2012]任务安排 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 868 Solved: 236[Submit][Status ...
- 【BZOJ2726】[SDOI2012]任务安排 斜率优化+cdq分治
[BZOJ2726][SDOI2012]任务安排 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若 ...
- BZOJ_1096_[ZJOI2007]_仓库建设_(斜率优化动态规划+单调队列+特殊的前缀和技巧)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1096 有\(n\)个工厂,给出第\(i\)个工厂的到1号工厂的距离\(x[i]\),货物数量\ ...
- NOI 2007 货币兑换Cash (bzoj 1492) - 斜率优化 - 动态规划 - CDQ分治
Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...
- bzoj 2726 任务安排 斜率优化DP
这个题目中 斜率优化DP相当于存在一个 y = kx + z 然后给定 n 个对点 (x,y) 然后给你一个k, 要求你维护出这个z最小是多少. 那么对于给定的点来说 我们可以维护出一个下凸壳,因为 ...
- [SDOI2012]任务安排 - 斜率优化dp
虽然以前学过斜率优化dp但是忘得和没学过一样了.就当是重新学了. 题意很简单(反人类),利用费用提前的思想,考虑这一次决策对当前以及对未来的贡献,设 \(f_i\) 为做完前 \(i\) 个任务的贡献 ...
- BZOJ_1010_[HNOI2008]_玩具装箱toy_(斜率优化动态规划+单调队列)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 给出\(n\)和\(l\).有\(n\)个玩具,第\(i\)个玩具的长度是\(c[i]\ ...
- BZOJ 2726 [SDOI2012] 任务安排 - 斜率优化dp
题解 转移方程与我的上一篇题解一样 : $S\times sumC_j + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$. 分离成:$S\t ...
随机推荐
- 002-localStorage和sessionStorage操作
一.概述 HTML5 提供了两种在客户端存储数据的新方法: localStorage - 没有时间限制的数据存储 一直存在除非用户手动清除缓存;是基于域的,任何该域下的所有页面都可访问localSto ...
- requests模块(请求接口)
下面分别是get,post,入参json,添加cookie,添加header,上传/下载文件 的接口请求举例: import requests #导入模块 #1.发get请求 url = 'htt ...
- django-xadmin设置全局变量
class GlobalSetting(object): site_title = '自己的命名' site_footer = '底部命名'# 收缩菜单 menu_style = 'accordion ...
- unity editor 折叠树
https://blog.csdn.net/e295166319/article/details/52370575 需要两个类:树节点类和界面实现类 1:树节点类(TreeNode) using Un ...
- 无法打开内核设备"\\.\Global\vmx86":系统找不到指定的文件. 是否在安装 VMwareWorksation 后重新引到 ? 问题解决
节前正常使用的工作环境, 过完春节后, 上班第一天就不正常工作了, 难不成机器也要放假休息, 虚拟机打不开了, 没办法办公可是不行的. 上网查原因, 解决问题. 上网看了很多关于此问题的解决办法, 很 ...
- webpack4 es6转换
在webpack里用es6语法, ie浏览器不识别,为了让浏览器识别,需要用到bebal转换; bebal,英文是通天塔 的意思, 我们常说的巴比伦也是这个词;我估计是当初设计者是想用它作为一个沟通e ...
- HDU 1174 题解(计算几何)
题面: 爆头 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...
- 把java(springboot)程序打包docker镜像
前言:要在docker运行java(jar包)程序,就要把程序打包成docker镜像(以下简称镜像),可以先理解为镜像就是jar包 打包需要程序代码,java本身的打包环境(包括jdk和maven), ...
- VirtualBox虚拟机与主机互通,并且虚拟机又能上网配置
1.在Virtualbox 的全局模式下建立host-only网络,完成之后在网络邻居的属性中会出现本地连接和virtualbox host-only ethernet 连接 2.点击本地连接的属性, ...
- Java解析XML介绍
开发十年,就只剩下这套架构体系了! >>> XML解析器提供了访问或修改用来表示数据的xml文件的能力.Java中提供了多种方式来解析xml文件. 主要分为两类,包括解析XML文 ...