Time Limit: 10 Sec Memory Limit: 128 MB

Description

xx作为信息学界的大神,拥有众多的粉丝。为了感谢众粉丝的爱戴,xx决定举办一场晚会。为了气派,xx租了一个巨大的灯屏,这个灯屏有\(m\)行,每行有\(n\)个小灯泡。对于每一行灯,有L种操作方法,第i种表示你能将任意长度恰为\(A_i\)的连续一段灯泡的状态取反(灭变亮,亮变灭)。现对于每一行给定\(K\)个点,要求这K个点发光,其余点必须保持熄灭状态。求每一行达到目标状态的最小操作数。

Input

第一行一个数\(m\),表示LED屏的行数。

对于LED屏的每一行:

第一行为\(n,k,L\),意义见上。

第二行为\(k\)个数,表示要求发光的\(k\)个点。

第三行为\(L\)个数,表示\(L\)种操作方式。

Output

对于LED屏的每一行:如果无法达到目标状态,输出\(-1\),否则输出最少次数。

Sample Input

2
10 8 2
1 2 3 5 6 7 8 9
3 5
3 2 1
1 2
3

Sample Output

2
-1

HINT

对于\(100\%\)的数据,\(T\leq 10\),\(N\leq 10000\),\(K\leq 10\),\(L\leq 100\),\(1\leq A_i\leq N\)。

Source

By zjwst960422

Solution

一个很神仙的思路。

发现\(N\)非常大,但是\(K\)非常小,显然是状压DP,但是只状压\(K\)又不太好办。

于是我们发现,原来序列里只会有\(2K\)个点是一段\(0\)与一段\(1\)的间隔的点(我们这里取前一段的最后一个点)。然后我们又发现,不断地对一个段序列取反,实际上是让这一段和等长的只有\(1\)的序列异或。而这样之后,取反的区间内,相邻两个点的相对状态不会改变,即相邻两个点是否相等是不会改变的。

因此,我们对原序列\(a_i\)做一个这样的处理,维护这个点与后一个点的异或查分:

\[b[i]=a[i]\ xor\ a[i+1]\quad 0\leq i \leq n
\]

这样的话,我们对\(a\)里面连续的一段(\(l..r\))取反,只会改变\(b\)里面的\(b[l-1]\)与\(b[r]\)两个点。

同时,\(a\)数组与\(b\)数组之间的又是唯一确定的关系。所以我们要\(A\)的末状态,等价于对应的\(B\)。

然后我们发现,如果把全\(0\)作为初状态,发光后的作为末状态,这样末状态太乱了,不方便转移。倒不如,倒过来,发光后的为初,全\(0\)为末。然后\(A\)全\(0\),对应的\(B\)也是全\(0\)的。

我们发现,我们实际上只是需要把初始的\(B\)里面的所有\(1\)全部去掉即可。然后,如果两个点坐标差恰好为一个操作时,就可以操作一次,那就是把这两点取反,中间的点不变!。那么我们要算出只取反\(i\)和\(j\) 需要的操作次数\(f[i][j]\),其实只需要从\(i\)出发跑BFS最短路即可。

然后考虑如何求出总的操作次数。

我们发现,\(B\)数列中最多有\(2K\) 个点为\(1\),所以我们只应该把那\(2K\)个点取反,其他点都不能动。那么我们状压一下这些点。然后就是一个非常显而易见的DP。\(dp[S]\)表示\(S\)里面的点已经完成了取反的任务。

\[dp[S]=\min\{dp[C_S{i,j}]+f[i][j]\ \ |\ \ i,j\in S\}\qquad dp[0]=0
\]

然后我们类似于愤怒的小鸟的优化,这里会产生很多重复的转移,我们的\(i\)只需要取\(S\)中的最小的点就可以了。

最后答案为\(dp[full\_set]\)。

时间复杂度\(O(nmk+2^kk)\)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#define inf 1000000000
#define N 10005
#define M 2000005
#define T 45
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x*=10;x+=ch-'0';ch=getchar();}
return x*f;
}
int n,K,m,cnt;
int x[N],size[N],a[N],num[N];
bool vis[N],mark[M];
int dis[N],d[25][25];
int q[N];
int f[M];
void bfs(int x)
{
memset(vis,0,sizeof(vis));
int t=0,w=1;
dis[x]=0;q[t]=x;vis[x]=1;
while(t!=w)
{
int now=q[t];t++;
for(int i=1;i<=m;i++)
{
if(now+size[i]<=n&&(!vis[now+size[i]]))
{
vis[now+size[i]]=1;
dis[now+size[i]]=dis[now]+1;
q[w++]=now+size[i];
}
if(now-size[i]>0&&(!vis[now-size[i]]))
{
vis[now-size[i]]=1;
dis[now-size[i]]=dis[now]+1;
q[w++]=now-size[i];
}
}
}
for(int i=1;i<=n;i++)
if(num[i])
{
if(!vis[i])d[num[x]][num[i]]=inf;
else d[num[x]][num[i]]=dis[i];
}
}
int dp(int x)
{
if(!x)return 0;
if(mark[x])return f[x];
mark[x]=1;
f[x]=inf;
int st=0;
for(int i=1;i<=cnt;i++)
{
if(x&(1<<(i-1)))
{
if(!st)st=i;
else
{
if(d[st][i]!=inf)
f[x]=min(f[x],dp(x^(1<<(st-1))^(1<<(i-1)))+d[st][i]);
}
}
}
return f[x];
}
int main()
{
freopen("password.in","r",stdin);
freopen("password.out","w",stdout);
n=read();K=read();m=read();
for(int i=1;i<=K;i++)
{
x[i]=read();
a[x[i]]=1;
}
for(int i=1;i<=m;i++)size[i]=read();
for(int i=n+1;i;i--)a[i]^=a[i-1];
n++;
for(int i=1;i<=n;i++)
if(a[i])
num[i]=++cnt;
for(int i=1;i<=n;i++)
if(a[i])bfs(i);
dp((1<<cnt)-1);
if(f[(1<<cnt)-1]==inf)printf("-1");
else printf("%d",f[(1<<cnt)-1]);
return 0;
}

BZOJ3508 开灯 & [校内NOIP2018模拟20181027] 密码锁的更多相关文章

  1. NYOJ 题目77 开灯问题(简单模拟)

    开灯问题 时间限制:3000 ms  |            内存限制:65535 KB 难度:1           描述 有n盏灯,编号为1~n,第1个人把所有灯打开,第2个人按下所有编号为2 ...

  2. BZOJ2143 飞飞侠 & [校内NOIP2018模拟20181026] 最强大脑

    Time Limit: 50 Sec Memory Limit: 259 MB Description 飞飞国是一个传说中的国度,国家的居民叫做飞飞侠.飞飞国是一个N×M的矩形方阵,每个格子代表一个街 ...

  3. bzoj3508: 开灯

    题目链接 题解 设\(b[i]=a[i]\ xor\ a[i+1]\) 我们可以发现,修改只会改变\(b[l-1]\)和\(b[r]\) 然后发现\(b[i]=1\)的点最多\(2*k\)个 状压\( ...

  4. 【BZOJ3508】开灯

    [BZOJ3508]开灯 题面 bzoj 题解 其实变为目标操作和从目标操作变回来没有区别,我们考虑从目标操作变回来. 区间整体翻转(\(\text{Xor}\;1\))有点难受,我们考虑将这个操作放 ...

  5. c语言实现开灯问题

    开灯问题: 有n盏灯,编号为1~n,第1个人把所有灯打开,第2个人按下所有编号为2 的倍数的开关(这些灯将被关掉),第3 个人按下所有编号为3的倍数的开关(其中关掉的灯将被打开,开着的灯将被关闭),依 ...

  6. Jquery开灯关灯效果

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. 9509 开灯(dfs)

    9509 开灯 时间限制:1000MS  内存限制:65535K提交次数:0 通过次数:0 题型: 编程题   语言: G++;GCC Description 有16的开关分别控制16盏灯,开关排列成 ...

  8. 洛谷 P1876 开灯(思维,枚举,规律题)

    P1876 开灯 题目背景 该题的题目是不是感到很眼熟呢? 事实上,如果你懂的方法,该题的代码简直不能再短. 但是如果你不懂得呢?那...(自己去想) 题目描述 首先所有的灯都是关的(注意是关!),编 ...

  9. 【Luogu1876】开灯(数论)

    [Luogu1876]开灯(数论) 题面 题目描述 首先所有的灯都是关的(注意是关!),编号为1的人走过来,把是一的倍数的灯全部打开,编号为二的的把是二的倍数的灯全部关上,编号为3的人又把是三的倍数的 ...

随机推荐

  1. ORACLE错误:ORA-28001: the password has expired解决方法

    Oracle提示错误消息ORA-28001: the password has expired,是由于Oracle11G的新特性所致, Oracle11G创建用户时缺省密码过期限制是180天(即6个月 ...

  2. django搭建一个小型的服务器运维网站-用户登陆与session

    目录 项目介绍和源码: 拿来即用的bootstrap模板: 服务器SSH服务配置与python中paramiko的使用: 用户登陆与session; 最简单的实践之修改服务器时间: 查看和修改服务器配 ...

  3. 继承ConstraintLayout

    开发中复杂的布局基本上都可以通过ConstraintLayout实现,所以我们继承ConstraintLayout实现一个EasyConstraintLayout能够为子view添加圆角和阴影效果. ...

  4. php Closure类 闭包 匿名函数

    php匿名函数 匿名函数就是没有名称的函数.匿名函数可以赋值给变量,还能像其他任何PHP对象那样传递.不过匿名函数仍是函数,因此可以调用,还可以传入参数.匿名函数特别适合作为函数或方法的回调. 如: ...

  5. gitlab+jenkins自动化打包IOS-jenkins配置

    实现的效果如图:  构建界面: 完成效果: 功能说明: 根据选择的代码分支,执行构建打包 构建成功后根据ipa/apk生成二维码,并可在历史构建列表中展示各个版本的二维码,通过手机扫描二维码可直接安装 ...

  6. MyEclipse上有main函数类运行报错:Editor does not contain a

    MyEclipse下有main函数类运行报错:Editor does not contain a main type?出现这种问题的原因是,该java文件   MyEclipse下有main函数类运行 ...

  7. jmeter之集合点的使用

    通过jmeter并不能1秒立即达到某一并发,这时候,可以通过集合点来实现,达到某一并发时,然后再一起执行某一动作,仅作用于第一次动作的时候 目录 1.集合点元件 2.简单的概念介绍 1.集合点元件 集 ...

  8. C# DataTable删除行Delete与Remove的问题

    DataTable删除行使用Delete后,只是该行被标记为deleted,但是还存在,用Rows.Count来获取行数时,还是删除之前的行数,需要使用datatable.AcceptChanges( ...

  9. Bootstrap 学习笔记5 进度条媒体对象和well组件

    代码: <ul class="media-list"> <li class="media"> <div class="m ...

  10. rsync+sersync实现文件同步

    一.目的 A服务器:11.11.11.11 源服务器 B服务器:22.22.22.22 目标服务器,既同步备份的目标 将A服务器的文件同步到B服务器上 二.rsync环境部署 1.关闭selinux, ...