【bzoj4710】[Jsoi2011]分特产
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花
输入
输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000
输出
输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果 MOD 1,000,000,007 的数值就可以了。
样例输入
5 4
1 3 3 5
样例输出
384835
由于“每个同学都必须至少分得一个特产”这个限制比较难处理,所以我们可以考虑容斥,
用没有限制-至少1个人没分到+至少2个人没分到-... 得到答案。
考虑如果i个人没分到该怎么处理:n个人选出i个不分,方案数为C(n,i);
对于每种特产设有w[i]个,分给(n−i)个同学,允许有人拿不到,方案数为
c(w[i]+n-i-1,n-i-1)
故最终答案为∑(-1)^i * C(n,i) *∑C(w[j]+n-i-1,n-i-1) (0<=i<=n-1,1<=j<=m)
手动算一下
3 2
3 4
则没有限制的有c(3,0)*c(5,2)*C(6,2)=150
至少有一个人没拿到C(3,1)*C(4,1)*C(5,1)=60
至少有二个人没拿到C(3,2)*1*1=3
ans=150-60+3=93
#include <bits/stdc++.h>
#define N 2010
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
ll c[N][N];
int w[N];
int main()
{
int n , m , i , j;
ll ans = 0 , tmp;
for(i = 0 ; i <= 2000 ; i ++ )
{
c[i][0] = 1;
for(j = 1 ; j <= i ; j ++ )
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) //M个特产
scanf("%d" , &w[i]);
for(i = 0 ; i < n ; i ++ )
{
tmp = c[n][i];
// cout<<" i is "<<i<<endl;
for(j = 1 ; j <= m ; j ++ )
{
tmp = tmp * c[ w[j] + n - i - 1] [w[j]] % mod;
// cout<<" m iss "<<c[ w[j] + n - i - 1] [w[j]]<<endl;
}
// cout<<i<<" tmp is "<<tmp<<endl;
if(i & 1)
ans = (ans - tmp + mod) % mod;
else
ans = (ans + tmp) % mod;
// cout<<i<<" ans is "<<ans<<endl;
}
printf("%lld\n" , ans);
return 0;
}
【bzoj4710】[Jsoi2011]分特产的更多相关文章
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- bzoj千题计划273:bzoj4710: [Jsoi2011]分特产
http://www.lydsy.com/JudgeOnline/problem.php?id=4710 答案=总方案数-不合法方案数 f[i][j] 前i种特产分给j个人(可能有人没有分到特产)的总 ...
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- Bzoj4710 [Jsoi2011]分特产
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 96 Solved: 62[Submit][Status][Discuss] Description ...
- BZOJ4710 [Jsoi2011]分特产 容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4710 题解 本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.c ...
- BZOJ4710: [Jsoi2011]分特产 组合数学 容斥原理
题意:把M堆特产分给N个同学,要求每个同学至少分到一种特产,共有多少种分法? 把A个球分给B个人的分法种数:(插板法,假设A个球互不相同,依次插入,然后除以全排列去重) C(A,B+A) 把M堆特产分 ...
- BZOJ4710 JSOI2011分特产(容斥原理+组合数学)
显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
随机推荐
- Python之网路编程之线程介绍
一.什么是线程 线程:顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程 所以,进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程才 ...
- C# List 过滤,排序,删除
taskList_IsManager.Where(p => p.IsManager == "1").ToList(); taskList = taskList.OrderBy ...
- 关于小程序picker 的使用
前言 以前做小程序的时候只会用那个picker mode = region的 3级选中, 现在需要自己根据后台给的编号省市区来用然后就研究了多列选择器:mode = multiSelector 的用法 ...
- mysql的视图、索引、触发器、存储过程
USE school; SELECT * FROM sc; SELECT * FROM course; SELECT * FROM student; SELECT * FROM teacher; -- ...
- 【LuoguP5280】[ZJOI2019] 线段树
题目链接 题目描述 略 Sol 显然不能直接暴力模拟. 观察这个东西本质在干什么,就是某一次操作可能进行可能不进行,然后求所有情况下被标记节点总数. 这个显然可以转化为概率问题,每次有二分之一的概率进 ...
- HDU-2444-The Accomodation of Students(二分图判定,最大匹配)
链接: https://vjudge.net/problem/HDU-2444#author=634579757 题意: There are a group of students. Some of ...
- asp.net 如何实现大文件断点上传功能?
之前仿造uploadify写了一个HTML5版的文件上传插件,没看过的朋友可以点此先看一下~得到了不少朋友的好评,我自己也用在了项目中,不论是用户头像上传,还是各种媒体文件的上传,以及各种个性的业务需 ...
- es入门--curl的使用
文档介绍: 首先要讲什么是文档,我们中大多是java程序员,java是面向对象的,那么在elasticsearch看来:对象和文档是等价的.只不过这个对象是可以被序列化成key-value形式的jso ...
- 配置 Hive On Tez
配置 Hive On Tez 标签(空格分隔): hive Tez 部署底层应用 简单介绍 介绍:tez 是基于hive 之上,可以将sql翻译解析成DAG计算的引擎.基于DAG 与mr 架构本身的优 ...
- [CSP-S模拟测试]:Six(数学)
题目传送门(内部题85) 输入格式 一个正整数$N$. 输出格式 一个数表示答案对$1000000007$取模后的结果 样例 样例输入1: 样例输出1: 样例输入2: 样例输出2: 样例输入3: 样例 ...