【学术篇】NOI2015 品酒大会 后缀数组+并查集
省选前大致是刷不了几道题了... 所以就找一些裸一点的题目练练板子算了= =
然而这题一点都不裸, 也并不怎么好写... 于是就浪费了将近一下午的时间... 然而还不是因为后缀数组板子不熟= =
首先这个"r相似"很显然就是lcp的值, 也就能想到后缀数组上的height... 不会后缀数组的先左转百度~
那么我们考虑如果有一个连续的区间, 它们的height值都是大于等于r的, 那么这段区间中的后缀两两"r相似".
而"r相似"的话, 也肯定有"r-1相似", "r-2相似", ... "0相似". 这样我们就会重复统计, 就会浪费时间. 所以我们不妨将这个连续的区间表示成一个点, 并查集!!
这样我们把id按照对应位置的height降序排序, 然后对于每个id, 我们把id-1这个点所在的区间和id所在的区间合并(根据height的含义, 就是表示sa[id]和sa[id-1]所对应的后缀的lcp长度..)
合并的同时维护信息即可. 说起来挺轻巧的, 其实不是很好懂.. (当然也可能是我太蒻了 理解能力差)
最后不要忘了统计的时候做一个后缀和, 比r大的答案都要统计一下.
说的很不清楚(然而其实只是用来练板子谁曾想到这破题我写了一下午呢...)
有不懂的可以去看代码看了就更不懂了Emmmm
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=300050;
const long long INF=1ll<<62;
char s[N];
int fa[N],sz[N],mn[N],mx[N],w[N],id[N];
long long cnt[N],ans[N];
int x[N],y[N],sa[N],rnk[N],cc[N],height[N],len;
inline int gn(int a=0,char c=0,int f=1){
for(;(c<'0'||c>'9')&&c!='-';c=getchar());
if(c=='-') c=getchar(),f=-1;
for(;c>47&&c<58;c=getchar()) a=a*10+c-48;
return a*f;}
bool hcmp(int x,int y){
if(height[x]==height[y]) return x<y;
return height[x]>height[y];
}
bool cmp(int *y,int a,int b,int k){
int ra=a+k>=len?-1:y[a+k],rb=b+k>=len?-1:y[b+k];
return y[a]==y[b]&&ra==rb;
}
void make_sa(){ int m=26;
for(int i=0;i<m;++i) cc[i]=0;
for(int i=0;i<len;++i) ++cc[x[i]=s[i]-'a'];
for(int i=1;i<m;++i) cc[i]+=cc[i-1];
for(int i=len-1;i>=0;--i) sa[--cc[x[i]]]=i;
for(int k=1;k<=len;k<<=1){ int p=0;
for(int i=len-k;i<len;++i) y[p++]=i;
for(int i=0;i<len;++i) if(sa[i]>=k) y[p++]=sa[i]-k;
for(int i=0;i<m;++i) cc[i]=0;
for(int i=0;i<len;++i) ++cc[x[y[i]]];
for(int i=1;i<m;++i) cc[i]+=cc[i-1];
for(int i=len-1;i>=0;--i) sa[--cc[x[y[i]]]]=y[i];
std::swap(x,y); m=1; x[sa[0]]=0;
for(int i=1;i<len;++i)
x[sa[i]]=cmp(y,sa[i],sa[i-1],k)?m-1:m++;
if(m>=len) break;
}
for(int i=0;i<len;++i) rnk[sa[i]]=i;
}
void make_height(){ int k=0;
for(int i=0;i<len;++i){
if(!rnk[i]) continue;
int j=sa[rnk[i]-1];
if(k) --k;
while(s[i+k]==s[j+k]) ++k;
height[rnk[i]]=k;
}
}
int find(int x){ if(fa[x]!=x) fa[x]=find(fa[x]); return fa[x];}
void merge(int x,int y){
sz[y]+=sz[x]; fa[x]=y;
mn[y]=min(mn[x],mn[y]);
mx[y]=max(mx[x],mx[y]);
}
int main(){
len=gn();
scanf("%s",s); len=strlen(s);
make_sa(); make_height();
for(int i=0;i<len;++i)
w[i]=gn();
for(int i=0;i<len;++i){
fa[i]=i; id[i]=i;
mx[i]=w[sa[i]]; mn[i]=w[sa[i]];
sz[i]=1; ans[i]=-INF;
} ::sort(id+1, id+len, hcmp);
for(int i=1;i<len;++i){
int x=find(id[i]-1),y=find(id[i]);
cnt[height[id[i]]]+=1ll*sz[x]*sz[y];
ans[height[id[i]]]=max(ans[height[id[i]]],1ll*mn[x]*mn[y]);
ans[height[id[i]]]=max(ans[height[id[i]]],1ll*mn[x]*mx[y]);
ans[height[id[i]]]=max(ans[height[id[i]]],1ll*mx[x]*mn[y]);
ans[height[id[i]]]=max(ans[height[id[i]]],1ll*mx[x]*mx[y]);
merge(x,y);
}
for(int i=len-2;i>=0;--i)
cnt[i]+=cnt[i+1],ans[i]=max(ans[i],ans[i+1]);
for(int i=0;i<len;++i)
printf("%lld %lld\n",cnt[i],cnt[i]?ans[i]:0);
}
【学术篇】NOI2015 品酒大会 后缀数组+并查集的更多相关文章
- [UOJ#131][BZOJ4199][NOI2015]品酒大会 后缀数组 + 并查集
[UOJ#131][BZOJ4199][NOI2015]品酒大会 试题描述 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个 ...
- 【BZOJ4199】[Noi2015]品酒大会 后缀数组+并查集
[BZOJ4199][Noi2015]品酒大会 题面:http://www.lydsy.com/JudgeOnline/wttl/thread.php?tid=2144 题解:听说能用SAM?SA默默 ...
- [NOI2015] 品酒大会 - 后缀数组,并查集,STL,启发式合并
[NOI2015] 品酒大会 Description 对于每一个 \(i \in [0,n)\) 求有多少对后缀满足 LCP 长度 \(\le i\) ,并求满足条件的两个后缀权值乘积的最大值. So ...
- BZOJ 4199: [Noi2015]品酒大会( 后缀数组 + 并查集 )
求出后缀数组后, 对height排序, 从大到小来处理(r相似必定是0~r-1相似), 并查集维护. 复杂度O(NlogN + Nalpha(N)) ------------------------- ...
- NOI 2015 品酒大会 (后缀数组+并查集)
题目大意:略 40分暴力还是很好写的,差分再跑个后缀和 和 后缀最大值就行了 一种正解是后缀数组+并查集 但据说还有后缀数组+单调栈的高端操作蒟蒻的我当然不会 后缀数组求出height,然后从大到小排 ...
- Uoj #131. 【NOI2015】品酒大会 后缀数组,并查集
#131. [NOI2015]品酒大会 统计 描述 提交 自定义测试 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个奖项, ...
- BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]
4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...
- 【BZOJ-4199】品酒大会 后缀数组 + 并查集合并集合
4199: [Noi2015]品酒大会 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 436 Solved: 243[Submit][Status] ...
- BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)
BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...
随机推荐
- Javascript基础三(函数)
函数第一节: 1.函数的概念及作用 函数是由事件驱动的或者当他被调用时可执行的可重复使用的代码块. 具备一点功能的代码段,代码段来实现具体的功能.要想实现一个函数的功能需要对函数进行调用. ...
- 11G利用隐含参数,修改用户名
步骤概述: 1. 停库,修改隐含参数_enable_rename_user 为true 2. 以 restrict方式启动数据库 3. alter user aaaa rename to ...
- docker-ce创建gitlab-ce容器笔记
前言 vagrant + ubuntu 16.04 设置 apt 源 sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak sudo vim ...
- Pythonf反射
Python中,反射有4个方法.分别是:hasattr().getattr().setattr()和delattr(). hasattr() 定义 hasattr()函数用于判断对象是否包含对应的属性 ...
- php图片无损压缩的问题解决
代码如下 <?php namespace App\Contract; use Carbon\Carbon; /** * 图片压缩封装类 * @author jackie <2019.11. ...
- JavaScript 的 API设计原则
一.接口的流畅性 好的接口是流畅易懂的,他主要体现如下几个方面: 1.简单 操作某个元素的css属性,下面是原生的方法: document.querySelectorAll('#id').style. ...
- Selenium之Android使用学习
20140507 Selenium一般用在web自动化上,为什么Android上也能用呢? 如图,手机端和DB联动:手机端的客户端给server发数据流,进行增删改查操作,这种写数据用update更新 ...
- 在IIS7以上导出所有应用程序池的方法批量域名绑定(网站绑定)
在IIS7+上导出所有应用程序池的方法: %windir%/system32/inetsrv/appcmd list apppool /config /xml > c:/apppools.xml ...
- (转)Git 提交的正确姿势:Commit message 编写指南
Git 每次提交代码,都要写 Commit message(提交说明),否则就不允许提交. $ git commit -m "hello world" 上面代码的-m参数,就是用来 ...
- grep 后加单引号、双引号和不加引号的区别
请尊重版权,原文地址:https://blog.csdn.net/cupidove/article/details/8783968 单引号: 可以说是所见即所得:即将单引号内的内容原样输出,或者描述为 ...