C. Recycling Bottles
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

It was recycling day in Kekoland. To celebrate it Adil and Bera went to Central Perk where they can take bottles from the ground and put them into a recycling bin.

We can think Central Perk as coordinate plane. There are n bottles on the ground, the i-th bottle is located at position (xi, yi). Both Adil and Bera can carry only one bottle at once each.

For both Adil and Bera the process looks as follows:

  1. Choose to stop or to continue to collect bottles.
  2. If the choice was to continue then choose some bottle and walk towards it.
  3. Pick this bottle and walk to the recycling bin.
  4. Go to step 1.

Adil and Bera may move independently. They are allowed to pick bottles simultaneously, all bottles may be picked by any of the two, it's allowed that one of them stays still while the other one continues to pick bottles.

They want to organize the process such that the total distance they walk (the sum of distance walked by Adil and distance walked by Bera) is minimum possible. Of course, at the end all bottles should lie in the recycling bin.

Input

First line of the input contains six integers axaybxbytx and ty(0 ≤ ax, ay, bx, by, tx, ty ≤ 109) — initial positions of Adil, Bera and recycling bin respectively.

The second line contains a single integer n (1 ≤ n ≤ 100 000) — the number of bottles on the ground.

Then follow n lines, each of them contains two integers xi and yi (0 ≤ xi, yi ≤ 109) — position of the i-th bottle.

It's guaranteed that positions of Adil, Bera, recycling bin and all bottles are distinct.

Output

Print one real number — the minimum possible total distance Adil and Bera need to walk in order to put all bottles into recycling bin. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct if .

Examples
input
3 1 1 2 0 0

1 1
2 1
2 3
output
11.084259940083
input
5 0 4 2 2 0

5 2
3 0
5 5
3 5
3 3
output
33.121375178000
Note

Consider the first sample.

Adil will use the following path: .

Bera will use the following path: .

Adil's path will be  units long, while Bera's path will be units long.

题意:

C题题意:二维平面上有n个(n<=10^5)点(xi,yi),有两个起点A(ax,ay)和B(bx,by),一个终点T(tx,ty)(0<=横纵坐标<=10^9)

     可以从两个起点中的一个或两个出发,经过所有(xi,yi),且每到达一个(xi,yi)都要回到终点,问所有走过距离的最小值

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-;
const int inf =0x7f7f7f7f;
const double pi=acos(-);
const int maxn=+; struct point{
double x,y;
}p[maxn];
point a,b,o;
int a1,a2,b1,b2;
double l[maxn+],mina,minb,seca,secb,ca1,ca2,cb1,cb2; double dis(point a,point b)
{
return pow((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y),0.5);
} void solvea(int i)
{
if(l[i]-dis(a,p[i])>mina)
{
seca=mina;
ca2=ca1;
mina=l[i]-dis(a,p[i]);
ca1=i;
}
else if(l[i]-dis(a,p[i])>seca)
{
seca=l[i]-dis(a,p[i]);
ca2=i;
}
} void solveb(int i)
{
if(l[i]-dis(b,p[i])>minb)
{
secb=minb;
cb2=cb1;
minb=l[i]-dis(b,p[i]);
cb1=i;
}
else if(l[i]-dis(b,p[i])>secb)
{
secb=l[i]-dis(b,p[i]);
cb2=i;
}
} int main()
{
while(~scanf("%lf %lf %lf %lf %lf %lf",&a.x,&a.y,&b.x,&b.y,&o.x,&o.y))
{
mina=minb=seca=secb=-1e20;
ca1=,ca2=,cb1=,cb2=;
int n;double ans=; scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%lf %lf",&p[i].x,&p[i].y);
l[i]=dis(p[i],o);
ans+=*l[i];
solvea(i);
solveb(i);
} if(ca1!=cb1)
{
if(mina<||minb<)
ans-=max(mina,minb);//刚开始没有加这句就wa了,因为即使两人最优的瓶子不是同
//一个,却可能存在其中有人的收益为负的情况,这种情况下就应该取两者中收益较大的一个(满足至少一个,可以///只有一个)
else
ans-=mina+minb;
}
else
{
if(mina<||minb<)
ans-=max(mina,minb);
else
{
if(mina+max(secb,0.0)>minb+max(seca,0.0))
ans-=mina+max(secb,0.0);
else ans-=minb+max(seca,0.0);
}
}
printf("%.16f\n",ans);
}
return ;
}

分析:用图论里的最短路和次短路的思想记录下最短路和次短路就好,,其实写的有点挫,可以直接用pair<double,int>再sort排序就好,,最关键的是,,要分情况讨论,因为两个人至少有一个要去捡,也就是说可以只有一个,所以应分情况讨论,错误点见代码

CF 672C 两个人捡瓶子 最短路与次短路思想的更多相关文章

  1. 最短路和次短路问题,dijkstra算法

    /*  *题目大意:  *在一个有向图中,求从s到t两个点之间的最短路和比最短路长1的次短路的条数之和;  *  *算法思想:  *用A*求第K短路,目测会超时,直接在dijkstra算法上求次短路; ...

  2. UESTC30-最短路-Floyd最短路、spfa+链式前向星建图

    最短路 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) 在每年的校赛里,所有进入决赛的同 ...

  3. hdu1688(dijkstra求最短路和次短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题意:第k短路,这里要求的是第1短路(即最短路),第2短路(即次短路),以及路径条数,最后如果最 ...

  4. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  5. POJ - 3463 Sightseeing 最短路计数+次短路计数

    F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...

  6. poj 3463 Sightseeing( 最短路与次短路)

    http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  7. POJ---3463 Sightseeing 记录最短路和次短路的条数

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9247   Accepted: 3242 Descr ...

  8. CF 672C Recycling Bottles[最优次优 贪心]

    C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  9. CF 586B 起点到终点的最短路和次短路之和

    起点是右下角  终点是左上角 每次数据都是两行的点  输入n 表示有n列 接下来来的2行是 列与列之间的距离 最后一行是  行之间的距离 枚举就行   Sample test(s) input 41 ...

随机推荐

  1. 关于8086中的jmp near ptr原理

    在8086汇编语言中.jmp 0x7c41 自己跳转到自己的位置,是一个死循环代码.对应的机器指令是e9fdffe9是跳转  fdff其实应该是fffd 也就是-3的补码. 执行到e9fdff相当于把 ...

  2. 【B2B】01-BFS

    纠正我对 01-BFS 问题的错误认识. 我一直以为对于 01-BFS,每次点 $u$ 出队时,对于 $u$ 的邻接边表中的边,只要先松弛边权为 0 的边再松弛边权为 1 的边就能保证每个点只入队一次 ...

  3. ARM Cortex-M 系列 MCU 错误追踪库 心得

    一. 感谢CmBacktrace开源项目,git项目网站:https://github.com/armink/CmBacktrace 二. 移植CmBacktrace 2.1 准备好CmBacktra ...

  4. Python 入门 之 初识面向对象

    Python 入门 之 初识面向对象 1.初识面向对象编程 (核心--对象) (1)观察以下代码: # 面向过程编程 s = "alexdsb" count = 0 for i i ...

  5. 小白学习tornado第二站-tornado简单介绍

    tornado基本web应用结构 分为两大块类 Application对象(只会实例化一次) 路由表URl映射 (r'/', MainHandler) 关键词参数settings RequestHan ...

  6. 福建工程学院第十四届ACM校赛G题题解

    外传:编剧说了不玩游戏不行 题意: 有n个石堆,我每次只能从某一堆中取偶数个石子,你取奇数个,我先手,先不能操作的人输.问最后谁能赢. 思路: 这个题仔细想想,就发现,取奇数的人有巨大的优势,因为假设 ...

  7. leecode刷题(26)-- 用栈实现队列

    leecode刷题(26)-- 用栈实现队列 用栈实现队列 使用栈实现队列的下列操作: push(x) -- 将一个元素放入队列的尾部. pop() -- 从队列首部移除元素. peek() -- 返 ...

  8. SQL----Scalar 函数

    UCASE() 函数 UCASE 函数把字段的值转换为大写. SQL UCASE() 语法 SELECT UCASE(column_name) FROM table_name SQL UCASE() ...

  9. 多列表zip合并的csv持久化储存

    有时xpath爬取数据之后会返回多个列表,这些列表的长度一样,这时候可以用zip()合并,然后返回一个zip对象,直接传入储存函数,进行持久化储存 例如: name=['张三','李四','王五'] ...

  10. 10 Python之文件操作

    1.文件操作 f = open(文件路径, mode="模式", encoding="编码") f: 文件句柄 文件的路径: 相对路径 相对于当前程序所在的文件 ...