对 NP-Hard问题和NP-Complete问题的一个直观的理解就是指那些很难(很可能是不可能)找到多项式时间算法的问题。因此一般初学算法的人都会问这样一个问题:NP-Hard和NP-Complete有什么不同?简单的回答是根据定义,如果所有NP问题都可以多项式归约到问题A,那么问题A就是 NP-Hard;如果问题A既是NP-Hard又是NP,那么它就是NP-Complete。从定义我们很容易看出,NP-Hard问题类包含了NP- Complete类。但进一步的我们会问,是否有属于NP-Hard但不属于NP-Complete的问题呢?答案是肯定的。例如停机问题,也即给出一个程序和输入,判定它的运行是否会终止。停机问题是不可判的,那它当然也不是NP问题。但对于SAT这样的NP-Complete问题,却可以多项式归约到停机问题。因为我们可以构造程序A,该程序对输入的公式穷举其变量的所有赋值,如果存在赋值使其为真,则停机,否则进入无限循环。这样,判断公式是否可满足便转化为判断以公式为输入的程序A是否停机。所以,停机问题是NP-Hard而不是NP-Complete。

NP问题就是指其解的正确性可以在多项式时间内被检查的一类问题。比如说数组求和,得到一个解,这个解对不对呢,显然是可以在多项式时间内验证的。再比如说SAT,如果得到一个解,也是能在多项式时间内验证正确性的。所以SAT和求和等等都是NP问题。然后呢,有一部分NP问题的解已经可以在多项式时间内找到,比如数组求和,这部分问题就是NP中比较简单的一部分,被命名为P类问题。那么P以外的NP问题,就是目前还不能够在多项式时间内求解的问题了。会不会将来某一天,有大牛发明了牛算法,把这些问题都在多项式时间内解决呢?也就是说,会不会所有的NP问题,其实都是P类问题呢,只是人类尚未发现呢?NP=P吗?

可想而知,证明NP=P的路途是艰难的,因为NP问题实在太多了,要一一找到多项式算法。这时Stephen A. Cook这位大牛出现了,写了一篇The Complexity of Theorem Proving Procedures,提出了一个NP-complete的概念。NPC指的是NP问题中最难的一部分问题,所有的NP问题都能在多项式时间内归约到NPC上。所谓归约是指,若A归约到B,B很容易解决,则A很容易解决。显然,如果有任何一道NPC问题在多项式时间内解决了,那么所有的NP问题就都成了P类问题,NP=P就得到证明了,这极大的简化了证明过程。那么怎样证明一个问题C是NP完全问题呢?首先,要证明C是NP问题,也就是C的解的正确性容易验证;然后要证明有一个NP完全问题B,能够在多项式时间内归约到C。这就要求必须先存在至少一个NPC问题。这时Cook大牛就在1971年证明了NP完全问题的祖先就是SAT。SAT问题是指给定一个包含n个布尔变量的逻辑式,问是否存在一个取值组合,使得该式被满足。Cook证明了SAT是一个NPC问题,如果SAT容易解决,那么所有NP都容易解决。Cook是怎样做到的呢?

他通过非确定性图灵机做到的。非确定性图灵机是一类特殊的图灵机,这种机器很会猜,只要问题有一个解,它就能够在多项式时间内猜到。Cook 证明了,SAT总结了该机器在计算过程中必须满足的所有约束条件,任何一个NP问题在这种机器上的计算过程,都可以描述成一个SAT问题。所以,如果你能有一个解决SAT的好算法,你就能够解决非确定性图灵机的计算问题,因为NP问题在非图机上都是多项式解决的,所以你解决了SAT,就能解决所有NP,因此——SAT是一个NP完全问题。感谢Cook,我们已经有了一个NPC问题,剩下的就好办了,用归约来证明就可以了。目前人们已经发现了成千上万的NPC问题,解决一个,NP=P就得证,可以得千年大奖(我认为还能立刻获得图灵奖)。

那么肯定有人要问了,那么NP之外,还有一些连验证解都不能多项式解决的问题呢。这部分问题,就算是NP=P,都不一定能多项式解决,被命名为NP-hard问题。NP-hard太难了,怎样找到一个完美的女朋友就是NP- hard问题。一个NP-hard问题,可以被一个NP完全问题归约到,也就是说,如果有一个NP-hard得到解决,那么所有NP也就都得到解决了。

让我冒着出错被人砸版砖的危险来解释一下P/NP/NP-Complete/NP-Hard。

1,计算复杂性
这是描述一种算法需要多少“时间”的度量。(也有空间复杂性,但因为它们能相互转换,所以通常我们就说时间复杂性。对于大小为 n 的输入,我们用含 n 的简化式子来表达。(所谓简化式子,就是忽略系数、常数,仅保留最“大”的那部分)
比如找出 n 个数中最大的一个,很简单,就是把第一个数和第二个比,其中大的那个再和第三个比,依次类推,总共要比 n-1 次,我们记作 O(n) (对于 n 可以是很大很大的情况下,-1可以忽略不计了)。
再比如从小到大排好的 n 个数,从中找出等于 x 的那个。一种方法是按着顺序从头到尾一个个找,最好情况是第一个就是 x,最坏情况是比较了 n 次直最后一个,因此最坏情况下的计算复杂度也是 O(n)。还有一种方法:先取中间那个数和 x 比较,如偏大则在前一半数中找,如偏小则在后一半数中找,每次都是取中间的那个数进行比较,则最坏情况是 lg(n)/lg2。忽略系数lg2,算法复杂度是O(lgn)。

2,计算复杂性的排序:
根据含 n 的表达式随 n 增大的增长速度,可以将它们排序:1 < lg(n) < n < nlg(n) < n^2 < ... < n^k (k是常数)< ... < 2^n。最后这个 2 的 n 次方就是级数增长了,读过棋盘上放麦粒故事的人都知道这个增长速度有多快。而之前的那些都是 n 的多项式时间的复杂度。为什么我们在这里忽略所有的系数、常数,例如 2*n^3+9*n^2 可以被简化为 n^3?用集合什么的都能解释,我忘了精确的说法了。如果你还记得微积分的话就想像一下对 (2*n^3+9*n^2)/(n^3) 求导,结果是0,没区别,对不?
2,P 问题:对一个问题,凡是能找到计算复杂度可以表示为多项式的确定算法,这个问题就属于 P (polynomial) 问题。

3,NP 问题:
NP 中的 N 是指非确定的(non-deterministic)算法,这是这样一种算法:(1)猜一个答案。(2)验证这个答案是否正确。(3)只要存在某次验证,答案是正确的,则该算法得解。
NP (non-deterministic polynomial)问题就是指,用这样的非确定的算法,验证步骤(2)有多项式时间的计算复杂度的算法。

4,问题的归约:
这……我该用什么术语来解释呢?集合?太难说清了……如果你还记得函数的映射的话就比较容易想象了。
大致就是这样:找从问题1的所有输入到问题2的所有输入的对应,如果相应的,也能有问题2的所有输出到问题1的所有输出的对应,则若我们找到了问题2的解法,就能通过输入、输出的对应关系,得到问题1的解法。由此我们说问题1可归约到问题2。

6,NP完全问题 (NP-Complete):
有这样一种问题,所有 NP 问题都可以归约到这种问题,则它是 NP-Complete 问题。可满足性问题就是一个 NP 完全问题,此外著名的给图染色、哈密尔顿环、背包、货郎问题都是 NP 完全问题。

5,NP-Hard:

从直觉上说,P<=NP<=NP-Complete<=NP-Hard,问题的难度递增。但目前只能证明 P 属于 NP,究竟 P=NP 还是 P 真包含于 NP 还未知。

NP-Hard问题和NP-Complete问题的更多相关文章

  1. (数学)P、NP、NPC、NP hard问题

    概念定义: P问题:能在多项式时间内解决的问题: NP问题:(Nondeterministic Polynomial time Problem)不能在多项式时间内解决或不确定能不能在多项式时间内解决, ...

  2. 浮点型数据需要转化为int,才能作为点,被读取abc = np.array(abc, dtype=np.int)

    import cv2 import numpy as np import matplotlib.pyplot as plt img = 'test.jpg' img = cv2.imread(img) ...

  3. python中numpy库ndarray多维数组的的运算:np.abs(x)、np.sqrt(x)、np.modf(x)等

    numpy库提供非常便捷的数组运算,方便数据的处理. 1.数组与标量之间可直接进行运算 In [45]: aOut[45]:array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ ...

  4. np.array.all()和np.array.any()函数

    np.array.all()是对np.array中所有元素进行与操作,然后结果返回True或False np.array.any()是对np.array中所有元素进行或操作,然后结果返回True或Fa ...

  5. np.meshgrid()用法+ np.stack()用法

    A,B,C,D,E,F是6个网格点,坐标如图,如何用矩阵形式(坐标矩阵)来批量描述这些点的坐标呢?答案如下 这就是坐标矩阵——横坐标矩阵X XX中的每个元素,与纵坐标矩阵Y YY中对应位置元素,共同构 ...

  6. np.random.randn()、np.random.rand()、np.random.randint()

    (1)np.random.randn()函数 语法: np.random.randn(d0,d1,d2……dn) 1)当函数括号内没有参数时,则返回一个浮点数: 2)当函数括号内有一个参数时,则返回秩 ...

  7. 【原创】数据处理中判断空值的方法(np.isnan、is np.nan和pd.isna)比较

      转载请注明出处:https://www.cnblogs.com/oceanicstar/p/10869725.html  1.np.isnan(只有数组数值运算时可使用) 注意:numpy模块的i ...

  8. Numpy中np.random.randn与np.random.rand的区别,及np.mgrid与np.ogrid的理解

    np.random.randn是基于标准正态分布产生的随机数,np.random.rand是基于均匀分布产生的随机数,其值在[0,1). np.mgrid 与np.ogrid的理解及区别:np.mgr ...

  9. RT: np - new sbt project generation made simple(r)

    np - new sbt project generation made simple(r) As pointed out in the comments by @0__ below, there's ...

  10. P、NP、NPC、NPH问题的区别和联系

    时间复杂度 时间复杂度描述了当输入规模变大时,程序运行时间的变化程度,通常使用\(O\)来表示.比如单层循环的时间复杂度为\(O(n)\),也就是说程序运行的时间随着输入规模的增大线性增长,两层循环的 ...

随机推荐

  1. 总结 | 慢 SQL 问题经验总结

    1. 导致慢 SQL 的原因 在遇到慢 SQL 情况时,不能简单的把原因归结为 SQL 编写问题(虽然这是最常见的因素),实际上导致慢 SQL 有很多因素,甚至包括硬件和 mysql 本身的 bug. ...

  2. 09 Python两种创建类的方式

    第一种比较普遍的方式: class Work(): def __init__(self,name): self.name = name w = Work('well woker') 这样就简单创建了一 ...

  3. 正则替换replace中$1的用法

    一.repalce定义 用于在字符串中用一些字符替换另一些字符,或替换一个与正则表达式匹配的子串. 1 2 3 4 5 stringObject.replace(regexp/substr,repla ...

  4. ubuntu修改apt源

    1.修改之前首先做好备份 sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak 2.编辑源列表文件 sudo vim /etc/apt/sou ...

  5. ES6 模块的加载实现 import和export

    ES6的Class只是面向对象编程的语法糖,升级了ES5的构造函数的原型链继承的写法,并没有解决模块化问题.Module功能就是为了解决这个问题而提出的. 历史上,JavaScript一直没有模块(m ...

  6. SpringBoot:spring boot使用Druid和监控配置

    Druid是Java语言中最好的数据库连接池,并且能够提供强大的监控和扩展功能. Spring Boot默认的数据源是:org.apache.tomcat.jdbc.pool.DataSource 业 ...

  7. Linux安装Redis、PHP安装Redis扩展模块

    Redis的官方下载: http://redis.io/download   步骤一:下载安装包  步骤二:编译源程序  步骤三:移动文件.便于管理  步骤四:启动 Redis服务  查看是否启动成功 ...

  8. 数据库 (二):MySQL密码策略与用户管理

    为了加强安全性,MySQL5.7为root用户随机生成了一个密码可通过# grep "password" /var/log/mysqld.log 命令获取MySQL的临时密码用该密 ...

  9. php获取当前网页地址

    判断是否为https /** * 判断是否为https * @return bool 是https返回true;否则返回false */ function is_https() { if ( !emp ...

  10. html 中 图片和文字一行 垂直居中对齐

    效果:      代码:<div><img src='img/point_icon.png' width='35px' height='35px' style='float: lef ...