已知 $x,y,z\in\textbf{R}$且$x+y+z=1$

(1)求$(x-1)^2+(y+1)^2+(z+1)^2$的最小值;

(2)若$(x-2)^2+(y-1)^2+(z-a)^2\geqslant \frac{1}{3}$成立,证明:$a\leqslant -3$或$a\geqslant -1.$

法一:权方和

(1)$(x-1)^2+(y+1)^2+(z+1)^2\geqslant \frac{[(x-1)+(y+1)+(z+1)]^2}{1+1+1}=\frac{4}{3}$

(2)因为$(x-2)^2+(y-1)^2+(z-a)^2\geqslant \frac{[(x-2)+(y-1)+(z-a)]^2}{1+1+1}=\frac{(2+a)^2}{3}$

所以$\frac{(2+a)^2}{3}\geqslant\frac{1}{3},\;\;$故有$a\leqslant -3$或$a\geqslant -1.$

法二:化归为点到面的距离

(1)点$(1,-1,-1)$到平面$x+y+z=1$的距离$d=\frac{|1-1-1-1|}{\sqrt{1^2+1^2+1^2}}=\frac{2}{\sqrt{3}},\;\;$即最小值为$\frac{4}{3}$

(2)点$(2,1,a)$到平面$x+y+z=1$的距离$d=\frac{|2+1+a-1|}{\sqrt{1^2+1^2+1^2}}\geqslant\frac{1}{\sqrt{3}},\;\;$故有$a\leqslant -3$或$a\geqslant -1.$

法三:拉乘法 (6月13日增补内容,只适合竞赛党和自主招生)

(1)令$f(x,y,z)=(x-1)^2+(y+1)^2+(z+1)^2+m(x+y+z-1),\;$则

$\left\{
\begin{array}{ll}
f'_x=2(x-1)+m=0 \\
f'_y=2(y+1)+m=0\\
f'_z=2(z+1)+m=0 \\
f'_m=x+y+z-1=0
\end{array}
\right.$

$\Rightarrow \left\{
\begin{array}{ll}
x=\frac{4}{3} \\
y=-\frac{1}{3}\\
z=-\frac{1}{3}
\end{array}
\right.$

$\Rightarrow A=\cdots=\left[
\begin{array}{lcr}
2&0&0 \\
0&2&0\\
0&0&2
\end{array}
\right]=8>0
$

故当$x=\frac{4}{3} ,y=-\frac{1}{3}, z=-\frac{1}{3}$时$(x-1)^2+(y+1)^2+(z+1)^2$取得最小值$\frac{4}{3}.$

(2)同(1)易知当$x=\frac{4-a}{3} ,y=\frac{1-a}{3}, z=\frac{2a-2}{3}$时$(x-2)^2+(y-1)^2+(z-a)^2$取得最小值$\frac{(2+a)^2}{3}$

$\Rightarrow \frac{(2+a)^2}{3}\geqslant \frac{1}{3},\;\;$故有$a\leqslant -3$或$a\geqslant -1.$

2019全国卷(III)理科23题的另类解法的更多相关文章

  1. 2017年全国卷3的21题与2018年全国卷3的21题命题背景是同一个函数$y=\frac{2x}{\ln(x+1)}$(再次瞎谈)

    2017年四川高考数学(全国卷3)理科21题第1问 已知函数\(f(x)=x-1-a\ln x\) (1)若\(f(x)\geqslant 0\),求\(a\)的值\(.\) 该不等式等价于$a\ln ...

  2. 《深入理解Android 卷III》第二章 深入理解Java Binder和MessageQueue

    <深入理解Android 卷III>即将公布.作者是张大伟.此书填补了深入理解Android Framework卷中的一个主要空白,即Android Framework中和UI相关的部分. ...

  3. LeetCode第[21][23]题(Java):Merge Sorted Lists

    题目:合并两个已排序链表 难度:Easy 题目内容: Merge two sorted linked lists and return it as a new list. The new list s ...

  4. 剑指offer 面试23题

    面试23题: 题目:如果一个链表中包含环,如何找出环的入口节点? 解题分析:其实此题可以分解为三个题目:1)如何判断一个链表中是否包含环?2)如何找到环的入口节点?3)如何得到环中节点的数目? 解决此 ...

  5. 《深入理解Android 卷III》第七章 深入理解SystemUI

    <深入理解Android 卷III>即将公布,作者是张大伟.此书填补了深入理解Android Framework卷中的一个主要空白,即Android Framework中和UI相关的部分. ...

  6. 《深入理解Android 卷III》第四章 深入理解WindowManagerService

    <深入理解Android 卷III>即将公布,作者是张大伟.此书填补了深入理解Android Framework卷中的一个主要空白.即Android Framework中和UI相关的部分. ...

  7. 《深入理解Android 卷III》第八章深入理解Android壁纸

    <深入理解Android 卷III>即将公布,作者是张大伟. 此书填补了深入理解Android Framework卷中的一个主要空白,即Android Framework中和UI相关的部分 ...

  8. 《深入理解Android 卷III》第六章 深入理解控件(ViewRoot)系统

    <深入理解Android 卷III>即将公布,作者是张大伟.此书填补了深入理解Android Framework卷中的一个主要空白,即Android Framework中和UI相关的部分. ...

  9. 《深入理解Android 卷III》第五章 深入理解Android输入系统

    <深入理解Android 卷III>即将公布.作者是张大伟.此书填补了深入理解Android Framework卷中的一个主要空白.即Android Framework中和UI相关的部分. ...

随机推荐

  1. C++中类中常规变量、const、static、static const(const static)成员变量的声明和初始化

    C++类有几种类型的数据成员:普通类型.常量(const).静态(static).静态常量(static const).这里分别探讨以下他们在C++11之前和之后的初始化方式. c++11之前版本的初 ...

  2. VM虚拟机网络设置

    两台PC安装了虚拟机和XP,采用“桥接”模式,设置了两个虚拟机的地址为同网段.但发现飞Q可以联通,数据库无法连接,且ping不通. 解决: (1)将防火墙关闭. (2)通过“虚拟网络编辑器”将该网络桥 ...

  3. python pandas dataframe 读取和写入Oracle

    1.代码:主要写入时表要为小写,否则报错 Could not reflect: requested table(s) not available in Engine from sqlalchemy i ...

  4. linux上传文件的命令——rz

    下面来看一下有关上传下载的说明. 1.rz.sz命令的安装方法 第一种方法:安装系统时选包包含rz.sz命令的包组 第二种方法:安装系统后通过执行yum install lrzsz -y 或 yum ...

  5. Elasticsearch集群基本操作

    检查集群的命令 $ curl http://172.16.101.55:9200/_cat =^.^= /_cat/allocation /_cat/shards /_cat/shards/{inde ...

  6. java并发学习资料

    1.Java 并发编程知识梳理以及常见处理模式 https://github.com/Fadezed/concurrency 2.Java 高并发多线程编程系列 https://github.com/ ...

  7. PTA(Basic Level)1015.德才论

    宋代史学家司马光在<资治通鉴>中有一段著名的"德才论":"是故才德全尽谓之圣人,才德兼亡谓之愚人,德胜才谓之君子,才胜德谓之小人.凡取人之术,苟不得圣人,君子 ...

  8. PTA(Basic Level)1029.旧键盘

    旧键盘上坏了几个键,于是在敲一段文字的时候,对应的字符就不会出现.现在给出应该输入的一段文字.以及实际被输入的文字,请你列出肯定坏掉的那些键. 输入格式: 输入在 2 行中分别给出应该输入的文字.以及 ...

  9. 【转帖】超能课堂(186) CPU中的那些指令集都有什么用?

    超能课堂(186)CPU中的那些指令集都有什么用? https://www.expreview.com/68615.html 不明觉厉 开始的地方 第一大类:基础运算类x86.x86-64及EM64T ...

  10. Ubuntu关机等待时间解决方案

    关于GDM问题(a stop job is running for session c1 of user root 1 min 30 s) 注意了,这个不是系统的问题,是配置的问题.鼓捣了老久才找出来 ...