normalization(统计)
In statistics and applications of statistics, normalization can have a range of meanings.[1] In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging. In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment. In the case of normalization of scores in educational assessment, there may be an intention to align distributions to a normal distribution. A different approach to normalization of probability distributions is quantile normalization, where the quantiles of the different measures are brought into alignment.
In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some types of normalization involve only a rescaling, to arrive at values relative to some size variable. In terms of levels of measurement, such ratios only make sense for ratio measurements (where ratios of measurements are meaningful), not interval measurements (where only distances are meaningful, but not ratios).
In theoretical statistics, parametric normalization can often lead to pivotal quantities – functions whose sampling distribution does not depend on the parameters – and to ancillary statistics – pivotal quantities that can be computed from observations, without knowing parameters.
在统计学和应用统计学中,normalization有着宽泛的意义。最简单的理解,比如评级的标准化,意味着不同尺度上测量的数据,调整为理论上的共同尺度,这通常要先于平均运算。在复杂的案例中,normalization通常也意味着复杂的调整,目的就是要使得调整后的数据的概率分布,保证某种尺度上的一致。举个例子,在教育评估中,不同科目难易不同,不同的学生选择了不同的科目,得了不同的分数,如何评价他们的好坏?要想使不同科目的分数具有科比性,就需要以‘标准分布(normal distribution)’作为比较的基准。与概率分布标准化不同的一种方法,就是‘分位点标准化( quantile normalization)’,也就是使得不同测量方法的分位点保持一致(我估计是不是类似于举重、拳击的轻量级、重量级的分位)。
在统计学的另一个术语中,标准化normalization特指经过平移和缩放后的统计版本,目的是这些标准化的数据使得来源于不同数据集合中的经归一化后,能够互相比较。以这样的方式消除总体影响效果,比如“异常事件序列( anomaly time series)”。某些类型的标准化只包括一个缩放因子,相对于尺度变量,使其达到某个某个量值。根据测量等级,这样的比率只对比率测量有意义(其中,测量的比率才是有意义的),而不是间隔测量(其中,只有距离是有意义的,而不是比率)
在理论统计学中,参数标准化常常可以导致基准量—采样分布函数不依赖于参数;并且产生一些辅助统计—基准量,这些基准量可以从观察数据计算得到,不需要知道具体参数。
Contents
[hide]
Examples[edit]
There are various normalizations in statistics – nondimensional ratios of errors, residuals, means and standard deviations, which are hence scale invariant – some of which may be summarized as follows. Note that in terms of levels of measurement, these ratios only make sense for ratio measurements (where ratios of measurements are meaningful), not interval measurements (where only distances are meaningful, but not ratios). See also Category:Statistical ratios...
在统计学上,有多种不同的标准化:比如无量纲的误差、残差、均值和标准差等的比率。因为是无量纲比率,所以是尺度不变的。某些比率可以概括如下。注意,根据测量等级,这些比率只是对“比率测量(ratio measurement)”有意义,其中的测量比率是有意义的。See also Category:Statistical ratios...
Name | Formula | Use |
---|---|---|
Standard score |
Normalizing errors when population parameters are known. Works well for populations that are normally distributed |
|
Student's t-statistic | Normalizing residuals when population parameters are unknown (estimated). | |
Studentized residual | Normalizing residuals when parameters are estimated, particularly across different data points in regression analysis. | |
Standardized moment | Normalizing moments, using the standard deviation {\displaystyle \sigma } |
|
Coefficient of variation |
Normalizing dispersion, using the mean {\displaystyle \mu } |
|
Feature scaling |
Feature scaling is used to bring all values into the range [0,1]. This can be generalized to restrict the range of values in the dataset between any arbitrary points a and b usings
|
Note that some other ratios, such as the variance-to-mean ratio {\displaystyle \left({\frac {\sigma ^{2}}{\mu }}\right)}, are also done for normalization, but are not nondimensional: the units do not cancel, and thus the ratio has units, and are not scale invariant.
Other types[edit]
Other non-dimensional normalizations that can be used with no assumptions on the distribution include:
- Assignment of percentiles. This is common on standardized tests. See also quantile normalization.
- Normalization by adding and/or multiplying by constants so values fall between 0 and 1. This used for probability density functions, with applications in fields such as physical chemistry in assigning probabilities to |ψ|2.
See also[edit]
References[edit]
- Jump up^ Dodge, Y (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9 (entry for normalization of scores)
normalization(统计)的更多相关文章
- 归一化方法 Normalization Method
1. 概要 数据预处理在众多深度学习算法中都起着重要作用,实际情况中,将数据做归一化和白化处理后,很多算法能够发挥最佳效果.然而除非对这些算法有丰富的使用经验,否则预处理的精确参数并非显而易见. 2. ...
- 从Bayesian角度浅析Batch Normalization
前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhih ...
- [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization
课程主页:http://cs231n.stanford.edu/ Introduction to neural networks -Training Neural Network ________ ...
- 数据标准化/归一化normalization
http://blog.csdn.net/pipisorry/article/details/52247379 基础知识参考: [均值.方差与协方差矩阵] [矩阵论:向量范数和矩阵范数] 数据的标准化 ...
- (转载)深度剖析 | 可微分学习的自适配归一化 (Switchable Normalization)
深度剖析 | 可微分学习的自适配归一化 (Switchable Normalization) 作者:罗平.任家敏.彭章琳 编写:吴凌云.张瑞茂.邵文琪.王新江 转自:知乎.原论文参考arXiv:180 ...
- 图像分类(二)GoogLenet Inception_v2:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3* ...
- tensorflow中batch normalization的用法
网上找了下tensorflow中使用batch normalization的博客,发现写的都不是很好,在此总结下: 1.原理 公式如下: y=γ(x-μ)/σ+β 其中x是输入,y是输出,μ是均值,σ ...
- BN(Batch Normalization)
Batch Nornalization Question? 1.是什么? 2.有什么用? 3.怎么用? paper:<Batch Normalization: Accelerating Deep ...
- 单细胞数据初步处理 | drop-seq | QC | 质控 | 正则化 normalization
比对 The raw Drop-seq data was processed with the standard pipeline (Drop-seq tools version 1.12 from ...
随机推荐
- 阿里云--安装nginx AND访问超时
首先先安装PCRE pcre-devel 和Zlib,因为配置nginx的时候会需要这两个东西PCRE(Perl Compatible Regular Expressions) 是一个Perl库,包括 ...
- JavaWEB开发02——CSS&JS
今日目标 使用CSS完成网站首页的优化 使用CSS完成网站注册页面的优化 使用JS完成简单的数据校验 使用JS完成图片轮播效果 教学目标: 了解CSS的概念 了解CSS的引入方式 了解CSS的基本用法 ...
- k8sReplicaSet控制器
一.ReplicaSet概述 简称RS,是pod控制器类型的一种实现,用于确保由其管控的pod对象副本数在任一时刻都能精确满足期望的数量.ReplicaSet控制器资源启动后会查找集群中匹配其标签选择 ...
- SparkStreaming HA高可用性
1.UpdateStateByKey.windows等有状态的操作时,自动进行checkpoint,必须设置checkpoint目录,数据保留一份在容错的文件系统中,一旦内存中的数据丢失,可以从文件系 ...
- Redis——SpringBoot项目使用Lettuce和Jedis接入Redis集群
Jedis连接Redis: 非线程安全 如果是多线程环境下共用一个Jedis连接池,会产生线程安全问题,可以通过创建多个Jedis实例来解决,但是创建许多socket会影响性能,因此好一点的方法是使用 ...
- springboot 开启缓存
Caching Data with Spring This guide walks you through the process of enabling caching on a Spring ma ...
- jquery die()方法 语法
jquery die()方法 语法 作用:die() 方法移除所有通过 live() 方法向指定元素添加的一个或多个事件处理程序.直线电机参数 语法:$(selector).die(event,fun ...
- jQuery_替换操作
代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title ...
- AcWing:105. 七夕祭(前缀和 + 中位数 + 分治 + 贪心)
七夕节因牛郎织女的传说而被扣上了「情人节」的帽子. 于是TYVJ今年举办了一次线下七夕祭. Vani同学今年成功邀请到了cl同学陪他来共度七夕,于是他们决定去TYVJ七夕祭游玩. TYVJ七夕祭和11 ...
- Unity3D_(API)场景切换SceneManager
Unity场景切换SceneManager 官方文档:传送门 静态方法 创建场景 CreateScene Create an empty new Scene at runtime with the g ...