题面:P2569 [SCOI2010]股票交易

题解:

F[i][j]表示前i天,目前手中有j股的最大收入
Case 1:第i天是第一次购买股票
F[i][j]=-j*AP[i]; (1<=j<=AS[i])
Case 2:第i天没有购买股票
F[i][j]=max(F[i][j],F[i-1][j])
Case 3:第i天买入j-k股
因为F[i][j]的最优情况是会顺承的,所以如果
第i天有交易的话,直接从第i-W-1天进行转移即可
F[i][j]=max(F[i][j],F[i-W-1][k]-AP[i]*(j-k))
(1<=j-k<=AS[i],i-W-1>=1)
Case 4:第i天卖出k-j股
F[i][j]=max(F[i][j],F[i-W-1][k]+BP[i]*(k-j))
(1<=k-j<=BS[i],i-W-1>=1)
再使用单调队列进行维护

所以对于Case 3:
找出max(F[i-W-1][k]+AP[i]*k)-AP[i]*j (1<=j-k<=AS[i],i-W-1>=1)
j-AS[i]<=k<=j-1,i-W-1>=1

对于Case 4:
找出max(F[i-W-1][k]+BP[i]*k)-BP[i]*j (1<=j-k<=BS[i],i-W-1>=1)
1+j<=k<=BS[i]+j,i-W-1>=1

额外:鸣谢@QZZ帮我解答了一个傻逼问题。

代码:

 #include<cstdio>
#include<queue>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int maxn=,inf=<<;
int T,MaxP,W,F[maxn][maxn],AP[maxn],BP[maxn],AS[maxn],BS[maxn];
struct Node{ int k,data; }nd;
Node que[maxn];
int f1,f2,ans;
int main(){
scanf("%d%d%d",&T,&MaxP,&W);
for(int i=;i<=T;i++)
scanf("%d%d%d%d",&AP[i],&BP[i],&AS[i],&BS[i]);
for(int i=;i<=T;i++)
for(int j=;j<=MaxP;j++){
if(j<=AS[i]) F[i][j]=-j*AP[i];
else F[i][j]=-inf;
}
for(int i=;i<=T;i++){
for(int j=;j<=MaxP;j++) F[i][j]=max(F[i][j],F[i-][j]);
if(i-W->=){
int w=i-W-;
f1=;f2=;
for(int j=;j<=MaxP;j++){
while(f1<=f2 && que[f1].k<j-AS[i]) f1++;
if(f1<=f2) F[i][j]=max(F[i][j],que[f1].data-AP[i]*j);
while(f1<=f2 && F[w][j]+AP[i]*j>=que[f2].data) f2--;
que[++f2].k=j; que[f2].data=F[w][j]+AP[i]*j;
}
f1=;f2=;
for(int j=MaxP;j>=;j--){
while(f1<=f2 && que[f1].k>j+BS[i]) f1++;
if(f1<=f2) F[i][j]=max(F[i][j],que[f1].data-BP[i]*j);
while(f1<=f2 && F[w][j]+BP[i]*j>=que[f2].data) f2--;
que[++f2].k=j; que[f2].data=F[w][j]+BP[i]*j;
}
}
}
ans=-inf;
for(int i=;i<=MaxP;i++) ans=max(ans,F[T][i]);
printf("%d\n",ans);
return ;
}

By:AlenaNuna

单调队列优化DP || [SCOI2010]股票交易 || BZOJ 1855 || Luogu P2569的更多相关文章

  1. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)

    传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...

  4. 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP

    上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...

  5. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  6. BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP

    BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...

  7. bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...

  8. SCOI 股票交易 单调队列优化dp

    这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...

  9. 单调队列优化DP || [NOI2005]瑰丽华尔兹 || BZOJ 1499 || Luogu P2254

    题外话:题目极好,做题体验极差 题面:[NOI2005]瑰丽华尔兹 题解: F[t][i][j]表示第t时刻钢琴位于(i,j)时的最大路程F[t][i][j]=max(F[t-1][i][j],F[t ...

随机推荐

  1. leetcode 51 N皇后问题

    代码,由全排列转化而来,加上剪枝,整洁的代码: 共有4个变量,res(最终的结果),level,当前合理的解,n皇后的个数,visit,当前列是否放过皇后,由于本来就是在新的行方皇后,又通过visit ...

  2. 【转】JS正则验证邮手机、箱等格式

    function test() { var temp = document.getElementById("text1"); //对电子邮件的验证 var myreg = /^([ ...

  3. TimePicker 时间选择器

    用于选择或输入日期 固定时间点 提供几个固定的时间点供用户选择 使用 el-time-select 标签,分别通过star.end和step指定可选的起始时间.结束时间和步长 <el-time- ...

  4. CSS 解决 a标签去掉下划线 text-decoration: none无效 的解决方案

    经过查阅,如果想要去掉a标签的默认效果,就要用text-decoration: none;,但是经过试验发现并不好用,可能是因为你用a标签里的class或id定义的CSS样式,就像这样: <di ...

  5. CICD - 持续集成与持续交付

    持续集成与持续交付是软件开发和交付中的实践.我们项目中一直在践行持续集成(CI:Continuous Integration):持续交付(CD:Continuous Delivery)未能达到理想状态 ...

  6. springboot2.0+swagger集成

    场景:项目中添加Swagger配置,可以加速项目的开发,在快速开发项目中十分重要. 1.pom.xml添加swagger <!--swagger --> <dependency> ...

  7. 阶段3 2.Spring_03.Spring的 IOC 和 DI_9 spring的依赖注入

    新建工程 改成jar包 加入spring的依赖 复制之前的工程代码 再复制配置文件 fac factory整个删除 构造函数也删除.删除后的代码.如下 配置文件中的注释都删除掉 spring中的依赖注 ...

  8. freetype HarfBuzz fontconfig Cairo 编译顺序

    There is also a circular dependency between freetype and HarfBuzz. Note that fontconfig and Cario ar ...

  9. python__007内置函数

    本文摘自:https://docs.python.org/3/library/functions.html?highlight=built#ascii     内置功能     abs() delat ...

  10. LeetCode.1025-除数游戏(Divisor Game)

    这是小川的第382次更新,第411篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第244题(顺位题号是1025).Alice和Bob轮流玩游戏,Alice首先出发. 最初 ...