题目传送门

题意:

设不定方程:x^2+y^2=z^2
若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组。
若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组。

定理:
正整数x,y,z构成一个本原的毕达哥拉斯三元组且y为偶数,当且仅当存在互素的正整数m,n(m>n),其中m,n的奇偶性不同,
并且满足
  x=m^2-n^2,y=2*m*n, z=m^2+n^2

本题目让你求的是,在n范围内(x,y,z<=n)本原的毕达哥拉斯三元组的个数,以及n以内且毕达哥拉斯三元组不涉及的数的个数

思路:

本原的三元组有:(3,4,5),(7,24,25),(5,12,13),(8,15,17),即第一个要输出的为4
所有的毕达哥拉斯三元组,除了上述4个外,还有:(6,8,10),(9,12,15),(12,16,20),(15,20,25)
不包含在这些三元组里面的<=n的数有9个。

思路:很显然,依据前面给出的定理,只要枚举一下m,n(m,n<=sqrt(n)),然后将三元组乘以i(保证i*z在范围内即可),
就可以求出所有的毕达哥拉斯三元组。

代码:

/*100内的勾股数有52
勾股数满足: x=a*a-b*b;
y=2*a*b;
z=a*a+b*b;
其中a,b的奇偶一定要不同
*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define N 1000005
int vis[N]; int gcd(int a,int b)
{
if(b==) return a;
else return gcd(b,a%b);
}
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(vis,,sizeof(vis));
int x,y,z;
int a,b,c;
int ans=;int tot=;
for(int i=;i*i<=n;i+=)
{
for(int j=;j*j<=n;j+=)
{
a=max(i,j);
b=min(i,j);
c=gcd(i,j);
if(c==)
{
x=a*a-b*b;
y=*a*b;
z=a*a+b*b;
for(int k=;k*z<=n;k++)
{
vis[x*k]=;
vis[y*k]=;
vis[z*k]=;//cout<<x*k<<" "<<y*k<<" "<<z*k<<endl;tot++;
}
if(z<=n)
{
ans++;
}
}
}
}
int cnt=;
for(int i=;i<=n;i++)
if(!vis[i]) cnt++;
printf("%d %d\n",ans,cnt);//cout<<tot<<endl;
}
}

poj1305 Fermat vs. Pythagoras(勾股数)的更多相关文章

  1. Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))

    题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...

  2. 数论(毕达哥拉斯定理):POJ 1305 Fermat vs. Pythagoras

    Fermat vs. Pythagoras Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 1493   Accepted: ...

  3. UVa 106 - Fermat vs Pythagoras(数论题目)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  4. MT【315】勾股数

    (高考压轴题)证明以下命题:(1)对任意正整数$a$都存在正整数$b,c(b<c)$,使得$a^2,b^2,c^2$成等差数列.(2)存在无穷多个互不相似的三角形$\Delta_n$,其边长$a ...

  5. hdu 6441 (费马大定理+勾股数 数学)

    题意是给定 n 和 a,问是否存在正整数 b,c 满足:a^n + b^n == c^n.输出 b  c,若不存在满足条件的 b,c,输出 -1 -1. 当 n > 2 时,由费马大定理,不存在 ...

  6. C语言 · 勾股数

    勾股数 勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形. 已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数. 求满足这个条件的不同直角三角形的个数. [数据格式] ...

  7. 猜想:一组勾股数a^2+b^2=c^2中,a,b之一必为4的倍数。

    证明: 勾股数可以写成如下形式 a=m2-n2 b=2mn c=m2+n2 而m,n按奇偶分又以下四种情况 m n 奇 偶 ① 偶 奇 ② 偶 偶 ③ 奇 奇 ④ 上面①②③三种情况中,mn中存在至少 ...

  8. 不用一个判断,用JS直接输出勾股数

    说明: 这里勾股数是符合a2+b2=c2的整数,比如32+42=52,52+122=132,怎么把符合条件的勾股数找出来呢?用代数替代的方法可以极大简化程序,直至一个判断都不用. 可以设a=m2-n2 ...

  9. 2018中国大学生程序设计竞赛 - 网络选拔赛 4 - Find Integer 【费马大定理+构造勾股数】

    Find Integer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

随机推荐

  1. Java 8 Date常用工具类

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11983108.html Demo package org.fool.util; import java ...

  2. 【leetcode】837. New 21 Game

    题目如下: 解题思路:这个题目有点像爬楼梯问题,只不过楼梯问题要求的计算多少种爬的方式,但是本题是计算概率.因为点数超过或者等于K后就不允许再增加新的点数了,因此我们可以确定最终Alice拥有的点数的 ...

  3. 【leetcode】74. Search a 2D Matrix & 240. Search a 2D Matrix II

    题目如下:这两个题目可以用同样的代码来解答,因此就合并在一起了. 题目一: 题目二: 解题思路:两个题目的唯一区别在于第二个题目下一行的最小值不一定会小于前一行的最大值.但是不管怎么样我们可以确定的是 ...

  4. postman基础

    Postman使用场景: 开发接口的时候需要快速的调用接口,以便调试 测试的时候需要非常方便的调用接口,通过不同的参数去测试接口的输出 这些接口调用是需要保存下来的反复运行的 在运行过程中如果有断言( ...

  5. es6 语法使用

    一.相关背景介绍 我们现在大多数人用的语法javascript 其实版本是ecmscript5,也是就es5.这个版本己经很多年了,且完美被各大浏览器所支持.所以很多学js的朋友可以一直分不清楚es5 ...

  6. React Native 之FlatList 下拉刷新和上拉加载更多

    接上一篇代码: 只修改了FlatListDemo.js里面的代码 import React, {Fragment,Component} from 'react'; import { SafeAreaV ...

  7. jQuery 遍历 - 同胞(siblings)

    同胞拥有相同的父元素. 通过 jQuery,您能够在 DOM 树中遍历元素的同胞元素. 在 DOM 树中水平遍历 有许多有用的方法让我们在 DOM 树进行水平遍历: siblings() next() ...

  8. height设置百分比的条件

    很多时候我们在给height设置百分比的时候不起作用, 这时候就要来谈谈什么情况下才起作用了 1)所有父级元素必须有高度: 2)必须是块级元素,行内元素不起作用: 3)ie9 以下 使用 positi ...

  9. [CSP-S模拟测试]:方程的解(小学奥数)

    题目描述 给出一个二元一次方程$ax+by=c$,其中$x$.$y$是未知数,求它的正整数解的数量. 输入格式 第一行一个整数$T$,表示有$T$组数据.接下来$T$行,每行$3$个整数$a$.$b$ ...

  10. 测试常用linux命令1

    进程相关: 1,查看所有进程(包含历史进程): ps -ef 各个参数的含义依次是uid,pid,ppid,c(cpu利用率),stime(进程启动时间),tty,time,cmd 2,动态查看进程t ...