题意 : 给出两个操作,① 往一个序列集合(初始为空)里面不降序地添加数字、② 找出当前序列集合的一个子集使得 (子集的最大元素) - (子集的平均数) 最大并且输出这个最大差值

分析 : 

首先关注到 ① 操作是有序地添加数

然后为了回答 ② 的问询,来分析一波

直觉告诉我们,要最大化差值,选取的子集最大元素应当越大越好

这一点是对的,具体的证明可以看 CF 的官方题解

那么也就是说选出的子集里面必定有当前序列集合的最大值元素

然后为了使(子集的平均数)越小,直觉又告诉我们

需要贪心地选择小的元素加入子集,这一点是显然的

仔细一想就能发现,如果我们从小到大地将元素加入子集

子集的平均数肯定是先减后增,是个凹函数

又因为是序列有序,所以我们可以去三分序列的前缀和数组寻找凹点

最后的答案就是 (集合序列最大值) - (凹点的平均值)

至于二分解法,也同样是和上面一个道理

我们可以去二分前缀和数组的一个位置,假设为 POS

如果算出来的平均值比 POS+1 这个位置的元素更大

说明加入 POS+1 这个元素肯定更优,最后一直二分到合理位置就是答案了

具体看代码

二分 1231ms

#include<bits/stdc++.h>
#define LL long long
using namespace std;
;
vector<LL> arr;
LL Presum[maxn];

inline void GetAns()
{
    , R = arr.size()-, idx = ;
    double avg;
    while(L <= R){
        ;
        avg = (] + Presum[mid]) / ();
        ]) L = mid + ;///平均值比后面的元素更大,说明添加进 mid+1 这个元素肯定更优
        , idx = mid;
    }

    avg = (] + Presum[idx]) / ();
    ] - avg;
    printf("%.9f\n", ans);
}

int main(void)
{
    int Q;
    scanf("%d", &Q);
    while(Q--){
        int command;
        scanf("%d", &command);
        ){
            LL tmp;
            cin>>tmp;
            arr.push_back(tmp);
            Presum[arr.size()-] = ((arr.size()- < ) ?  : Presum[arr.size()-]) + tmp;
        }else GetAns();
    }
    ;
}

二分

三分 514ms

#include<bits/stdc++.h>
#define LL long long
using namespace std;
;
vector<LL> arr;
LL Presum[maxn];

double Fun(int pos)
{ ] + Presum[pos]) / (); }

double GetAns()
{
    , R = arr.size() - ;
    ){
        ;
        ;
        if( Fun(mid) > Fun(mmid) ) L = mid;
        else R = mmid;
    }
    ] - Fun(Fun(L) > Fun(R) ? R : L);
}

int main(void)
{
    int Q;
    scanf("%d", &Q);
    while(Q--){
        int command;
        scanf("%d", &command);
        ){
            LL tmp;
            scanf("%I64d", &tmp);
            arr.push_back(tmp);
            Presum[arr.size()-] = (arr.size()- <  ?  : Presum[arr.size()-]) + tmp;
        }else{
            printf("%.9f\n", GetAns());
        }
    }
    ;
}

三分

Codeforces 939E Maximize ( 三分 || 二分 )的更多相关文章

  1. 2018.12.08 codeforces 939E. Maximize!(二分答案)

    传送门 二分答案好题. 题意简述:要求支持动态在一个数列队尾加入一个新的数(保证数列单增),查询所有子数列的 最大值减平均值 的最大值. 然而网上一堆高人是用三分做的. 我们先考虑当前的答案有可能由什 ...

  2. Codeforces 939E Maximize! (三分 || 尺取)

    <题目链接> 题目大意:给定一段序列,每次进行两次操作,输入1 x代表插入x元素(x元素一定大于等于之前的所有元素),或者输入2,表示输出这个序列的任意子集$s$,使得$max(s)-me ...

  3. Codeforces 939E - Maximize!

    939E - Maximize! 思路: 贪心:最后的集合是最大值+前k小个 因为平均值时关于k的凹形函数,所以可以用三分求最小值 又因为后面的k肯定比前面的k大,所以又可以双指针 三分: #incl ...

  4. codeforces 939E Maximize! 双指针(two pointers)

    E. Maximize! time limit per test 3 seconds memory limit per test 256 megabytes input standard input ...

  5. HDU 2298 Toxophily(公式/三分+二分)

    Toxophily Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  6. [Codeforces 1199C]MP3(离散化+二分答案)

    [Codeforces 1199C]MP3(离散化+二分答案) 题面 给出一个长度为n的序列\(a_i\)和常数I,定义一次操作[l,r]可以把序列中<l的数全部变成l,>r的数全部变成r ...

  7. Codeforces 8D Two Friends 三分+二分+计算几何

    题目链接:点击打开链接 题意:点击打开链接 三分house到shop的距离,二分这条斜边到cinema的距离 #include<stdio.h> #include<string.h& ...

  8. codeforces#1139E. Maximize Mex(逆处理,二分匹配)

    题目链接: http://codeforces.com/contest/1139/problem/E 题意: 开始有$n$个同学和$m$,每个同学有一个天赋$p_{i}$和一个俱乐部$c_{i}$,然 ...

  9. CodeForces 939E Maximize

    Maximize 题意:整个程序有2种操作,操作1将一个元素放入集合S中,且保证最新插入的元素不小于上一次的元素, 操作2 找到集合S中的某个子集合, 使得 集合中最大的元素减去平均数的值最大. 题解 ...

随机推荐

  1. lua基础学习(一)

    设计目的: 为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能.   特性: 1.编译之后仅仅100k,可以很方便嵌入别的程序里. 2.可扩张性,Lua提供了非常易于使用的扩展接口和机制:由宿 ...

  2. k8s--kubernetes存储之Volume

    Volume 容器磁盘上的文件的生命周期是短暂的,这就使得在容器中运行重要应用时会出现一些问题.首先,当容器崩溃时, kubelet会重启它,但是容器中的文件将丢失--容器以干净的状态(镜像最初的状态 ...

  3. Springg MVC 中文乱码处理

    1.对于post请求的处理方式,在web.xml添加拦截器 <filter> <filter-name>CharacterEncodingFilter</filter-n ...

  4. 初识JavaScript(三)

    初识JavaScript(三) 我从上一讲<初识JavaScript(二)>了解到了类型.值.变量的定义以及特点,本节我将学习到JavaScript中的算术运算.二进制浮点数和四舍五入的错 ...

  5. 2018-2019 ICPC, NEERC, Southern Subregional Contest (codeforces 1070)

    A. 直接从状态(0,0)bfs, 这样一定是最小的 #include <iostream> #include <sstream> #include <algorithm ...

  6. Vue2 & ElementUI实现管理后台之input获得焦点

    Vue.directive('focus', function (el, option) { var defClass = 'el-input', defTag = 'input'; var valu ...

  7. 一文简单理解package-lock.json

    根据官方文档,https://docs.npmjs.com/files/package-lock.json 这个package-lock.json 是在 `npm install`时候生成一份文件,用 ...

  8. mysql5和mysql8连接数据库的配置

    mysql5: mysql8: db.properties jdbc.driver=com.mysql.cj.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3 ...

  9. ARM伪指令和协处理器访问指令

    伪指令本身没有对应的机器码 .global声明全局符号,点事GUN汇编的特点 .data定义数据段 .equ DA #0x89 定义宏 .align 4 4字节对齐 mov 指令里的立即数只能是8位的 ...

  10. dataTable 、dataView、Dataset 区别

    dataTable .dataView.Dataset 区别的经典回答 1.DataView是DataTable的表示,DataTable表里的记录是没有顺序的,但显示可以有不同顺序(DataVIew ...