tensorflow图像处理函数(1)
1、tensorflow中对jpeg格式图像的编码/解码函数:
import matplotlib.pyplot as plt
import tensorflow as tf
image_raw_data=tf.gfile.FastGFile('/Users/jk/Downloads/timg.jpeg','rb').read()
with tf.Session() as sess:
img_data=tf.image.decode_jpeg(image_raw_data) #通过tf.img.decode_jpeg函数对jpeg格式的图像进行解码,解码后的结果为一个张量
print(img_data.eval()) #输出解码后的三维矩阵
plt.imshow(img_data.eval())
plt.show()
img_data=tf.image.convert_image_dtype(img_data,dtype=tf.uint8)
encode_image=tf.image.encode_jpeg(img_data) #将图像的三维矩阵重新按照jpeg格式编码存入文件,打开该图像可以得到和原始图像一样的图像
with tf.gfile.GFile('/Users/jk/Downloads/output','wb') as f: #将文件写入目标路径,生成图像文件
f.write(encode_image.eval())
2、图像大小调整(和上面的类似,仅多了图像大小调整的部分,下面的例子将类似):
import matplotlib.pyplot as plt
import tensorflow as tf
image_raw_data=tf.gfile.FastGFile('/Users/jk/Downloads/timg.jpeg','rb').read()
with tf.Session() as sess:
img_data=tf.image.decode_jpeg(image_raw_data)
print(img_data.eval())
plt.imshow(img_data.eval())
plt.show()
img_data=tf.image.convert_image_dtype(img_data,dtype=tf.uint8)
resized=tf.image.resize_images(img_data,size=[300,300],method=1) #将图像大小转为[300,300],图像深度在没有明确设置前会是?,
print(resized.get_shape())
resized=tf.image.convert_image_dtype(resized,dtype=tf.uint8) #数据预处理时候会把dtype转为tf.float32,因此需要手动转回tf.uint8
encode_image=tf.image.encode_jpeg(resized)
with tf.gfile.GFile('/Users/jk/Downloads/output','wb') as f: #返回调整大小后的图像
f.write(encode_image.eval())
通过tf.image.resize_image_with_crop_or_pad函数来调整图像大小的功能:
croped=tf.image.resize_image_with_crop_or_pad(img_data,3000,3000) #将图像数据扩充为3000x3000,若图像大小大于原始数据,则使用全0填充。
通过tf.image.central_crop函数来对图像按比例进行裁剪:
central_cropped=tf.image.central_crop(img_data,0.8) #按比例进行缩小,后面的比例必须是一个(0,1]的实数。
通过tf.image.flip_up_down函数来进行图像翻转:
flipped=tf.image.flip_up_down(img_data) #上下翻转
flipped=tf.image.flip_left_right(img_data) #左右翻转
flipped=tf.image.transpose_image(img_data) #沿对角线翻转
3、图像的色彩调整
通过tf.image.adjust_brightness函数进行色彩调整:
adjusted=tf.image.adjust_brightness(img_data,-0.5) #将图像的亮度-0.5
adjusted=tf.image.adjust_brightness(img_data,+0.5) #将图像的亮度+0.5
adjusted=tf.image.random_brightness(img_data,max_delta) #将图像的亮度在[-max_delta,max_delta]范围内随机调整
通过tf.image.adjust_contrast函数来调整图像的对比度:
adjusted=tf.image.adjust_contrast(img_data,5) #将图像的对比度+5
adjusted=tf.image.random_contrast(img_data,lower,upper) #在[lower, upper]范围内随机调整图像的对比度
通过tf.image.adjust_hue函数来调整图像的色相:
adjusted=tf.image.adjust_hue(img_data,0.5) #将图像的色相加0.5
adjusted=tf.image.random_hue(img_data,max_delta) #在[-max_delta,max_delta]范围内随机调整图像的色相
通过tf.image.adjust_saturation函数调整图像的饱和度:
adjusted=tf.image.adjust_saturation(img_data,-5) #将图像的饱和度-5
adjusted=tf.image.random_saturation(img_data,lower,upper) #随机调整图像的饱和度
通过tf.image.per_image_whitening函数来对图像进行标准化:
adjusted=tf.image.per_image_standardization(img_data) #对图像进行标准化,转化成亮度均值为0,方差为1.
4、处理标注框:
通过tf.image.draw_bounding_boxes函数在图像中加入标注框
import matplotlib.pyplot as plt
import tensorflow as tf
image_raw_data=tf.gfile.FastGFile('/Users/jk/Downloads/timg.jpeg','rb').read()
with tf.Session() as sess:
img_data=tf.image.decode_jpeg(image_raw_data) #通过tf.img.decode_jpeg函数对jpeg格式的图像进行解码,解码后的结果为一个张量
img_data=tf.image.convert_image_dtype(img_data,dtype=tf.uint8)
img_data=tf.image.resize_images(img_data,[180,267],method=1)
batched=tf.expand_dims(tf.image.convert_image_dtype(img_data,tf.float32),0)
boxes=tf.constant([[[0.05,0.05,0.9,0.7],[0.35,0.47,0.5,0.56]]])#标注框的表示形式:[y_min, x_min, y_max, x_max],组成部分为3维数组,分别对应[batch, N, 4],左边的boxes的shape为[1,2,4]
result=tf.image.draw_bounding_boxes(batched,boxes)
plt.imshow(result[0].eval())
plt.show()
5、提取标注框内的图像:(不知道为何画出来的标注框和通过标注框截取的内容不一致)
import matplotlib.pyplot as plt
import tensorflow as tf
image_raw_data=tf.gfile.FastGFile('C:/Users/1/Desktop/01.jpg','rb').read()
with tf.Session() as sess:
img_data=tf.image.decode_jpeg(image_raw_data) #通过tf.img.decode_jpeg函数对jpeg格式的图像进行解码,解码后的结果为一个张量
img_data=tf.image.convert_image_dtype(img_data,dtype=tf.uint8)
img_data=tf.image.resize_images(img_data,[180,267],method=1)
boxes=tf.constant([[[0.35,0.1,0.8,0.7],[0.4,0.47,0.5,0.56]]]) #通过提供标注框的方式告诉随机截图的算法哪些部分是有信息量的
begin,size,bbox=tf.image.sample_distorted_bounding_box(tf.shape(img_data),bounding_boxes=boxes)
batched=tf.expand_dims(tf.image.convert_image_dtype(img_data,tf.float32),0) #需要增加一维才能画框
img_with_box=tf.image.draw_bounding_boxes(batched,bbox) #在原图像的基础上画标注框
distorted_image=tf.slice(img_data,begin,size) #截取随机得到的图像
plt.imshow(distorted_image.eval())
plt.show()
plt.imshow(img_with_box[0].eval())
plt.show()
tensorflow图像处理函数(1)的更多相关文章
- TensorFlow图像处理函数
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 图像编码处理+图像大小调整+图像翻转+图像色彩调整+处理标注框 #!/usr/bin/env python # - ...
- 吴裕雄 python 神经网络——TensorFlow 图像处理函数
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt image_raw_data = tf.gfile ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:TensorFlow图像处理函数
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt #读取图片 image_raw_data = tf ...
- Tensorflow图像处理
Tensorflow图像处理主要包括:调整尺寸,图像翻转,调整色彩,处理标注框. 代码如下: #coding=utf-8 import matplotlib.pyplot as plt import ...
- Matlab图像处理函数:regionprops
本篇文章为转载,仅为方便学术讨论所用,不用于商业用途.由于时间较久,原作者以及原始链接暂时无法找到,如有侵权以及其他任何事宜欢迎跟我联系,如有侵扰,在此提前表示歉意.----------------- ...
- tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例
tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...
- 深度学习TensorFlow常用函数
tensorflow常用函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, Tensor ...
- php GD 和图像处理函数, 用 STHUPO.TTF 字体向图像写入文本
php GD 和图像处理函数, 用 STHUPO.TTF 字体向图像写入文本 注意: 01) imagettftext() 这个函数不能使用相对路径, 要想使用相对路径要先使用 puten ...
- php GD 和图像处理函数, 制作一张图片
php GD 和图像处理函数, 制作一张图片 // GD 和图像处理函数 // https://www.php.net/manual/zh/ref.image.php // https://www.p ...
随机推荐
- p5349 幂
分析 https://www.cnblogs.com/cjyyb/p/10822490.html 代码 #include<bits/stdc++.h> using namespace st ...
- C/C++判断字符串是否包含某个子字符串
C风格 #include <iostream> #include <string> #include <cstring> using namespace std; ...
- pycharm中添加python3 的环境变量
i卡是HDKJHA{{sadfsdafdsafd.jpg(uploading...)}}S{{53ad37a938001.jpg(uploading...)}}
- scrapy-splash常用设置
# Splash服务器地址 SPLASH_URL = 'http://localhost:8050' # 开启Splash的两个下载中间件并调整HttpCompressionMiddleware的次序 ...
- RNN系列
漫谈RNN之梯度消失及梯度爆炸:http://bbs.imefuture.com/article/4405 漫谈RNN之长短期记忆模型LSTM:http://bbs.imefuture.com/art ...
- k8s创建资源
一.创建方式分类: 命令 vs 配置文件 Kubernetes 支持两种方式创建资源: 1.用 kubectl 命令直接创建(适用于少数的pod创建) kubectl run httpd- ...
- Delphi中堆栈区别
http://blog.csdn.net/zang141588761/article/details/52838728 Delphi中堆栈区别 2016-10-17 14:49 277人阅读 评论( ...
- docker远程访问TLS证书认证shell
docker开启远程访问端口,防止非法访问 配置证书认证 配置防火墙或安全策略 #!/bin/bash # docker.tls.sh # 环境centos 7 ,root # 创建 Docker T ...
- Charls
1.连接设备 charles--proxy--proxy setting 设置端口号 charles--proxy--ssl proxy setting 设置代理域名 [pc端] charles--p ...
- git_04_回退到上个版本
前言 使用git版本控制的过程中,多人操作同一个项目时,有时经常会遇到代码冲突报错,一时又无法解决的问题,为了不影响他人正常使用这时便需要回滚代码至原来的版本.如何回滚代码至原来版,可参考以下步骤. ...