Description

Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

Input

Line 1: Two space-separated integers: M and N 
Lines 2..M+1: Line i+1 describes row i of the pasture with N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)

Output

Line 1: One integer: the number of ways that FJ can choose the squares modulo 100,000,000.

Sample Input

2 3
1 1 1
0 1 0

Sample Output

9

Hint

Number the squares as follows:

1 2 3
  4  

There are four ways to plant only on one squares (1, 2, 3, or 4), three ways to plant on two squares (13, 14, or 34), 1 way to plant on three squares (134), and one way to plant on no squares. 4+3+1+1=9.

Source

之前做了一下“铺地砖”的题,然后看别人用插头DP做,代码很简洁,于是也打算学习一下插头DP。

这个题应该是比较基础,反正1A了,爽歪歪。

不过第一次写的可能有些丑。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cmath>
using namespace std;
const int Mod=;
int dp[][<<],ans,a[][],m,n;
bool check(int u,int x,int y)
{
for(int i=;i<=m;i++) if((x&(<<(i-)))&&(x&(<<(i-)))) return false;
for(int i=;i<=m;i++) if((y&(<<(i-)))&&(y&(<<(i-)))) return false;
for(int i=;i<=m;i++) if(!a[u-][i]&&(x&(<<(i-)))) return false;
for(int i=;i<=m;i++) if(!a[u][i]&&(y&(<<(i-)))) return false;
for(int i=;i<=m;i++) if((x&(<<(i-)))&&(y&(<<(i-)))) return false;
return true;
}
int main()
{
int i,j,k;
while(~scanf("%d%d",&n,&m)){
for(i=;i<=n;i++)
for(j=m;j>=;j--)
scanf("%d",&a[i][j]);
dp[][]=;
for(i=;i<=n;i++){
for(j=;j<<<m;j++)
for(k=;k<<<m;k++)
if(check(i,j,k))
dp[i][k]=(dp[i][k]+dp[i-][j])%Mod;
}
for(i=;i<<<m;i++) ans=(ans+dp[n][i])%Mod;
printf("%d\n",ans);
}
return ;
}

POJ3254Corn Fields (状态压缩or插头DP)的更多相关文章

  1. POJ3254Corn Fields(状态压缩DP入门)

    题目链接 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相邻.问有多少种放牛方案(一 ...

  2. POJ2411Mondriaan's Dream(DP+状态压缩 or 插头DP)

    问题: Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after prod ...

  3. POJ3254Corn Fields——状态压缩dp

    题目:http://poj.org/problem?id=3254 1.枚举行: 2.把有影响的“放不放牛”加入参数中,用二进制数表示该位置放不放牛,再用十进制数表示二进制数: 3.优美的预处理lis ...

  4. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

  5. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  6. poj Corn Fields 状态压缩dp。

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5763   Accepted: 3052 Descr ...

  7. POJ3254 - Corn Fields(状态压缩DP)

    题目大意 给定一个N*M大小的土地,土地有肥沃和贫瘠之分(每个单位土地用0,1来表示贫瘠和肥沃),要求你在肥沃的单位土地上种玉米,如果在某个单位土地上种了玉米,那么与它相邻的四个单位土地是不允许种玉米 ...

  8. POJ 3254 Corn Fields (状态压缩DP)

    题意:在由方格组成的矩形里面种草,相邻方格不能都种草,有障碍的地方不能种草,问有多少种种草方案(不种也算一种方案). 分析:方格边长范围只有12,用状态压缩dp好解决. 预处理:每一行的障碍用一个状态 ...

  9. POJ 3254 Corn Fields状态压缩DP

    下面有别人的题解报告,并且不止这一个状态压缩题的哦···· http://blog.csdn.net/accry/article/details/6607703 下面是我的代码,代码很挫,绝对有很大的 ...

随机推荐

  1. elasticsearch-head-master下运行npm install报npm WARN elasticsearch-head@0.0.0 license should be a valid SPDX license expression

    2个月没有启动es和es配套服务,今天运行时,发现如下问题: 运行npm install 出现npm WARN elasticsearch-head@0.0.0 license should be a ...

  2. 【ABAP系列】SAP ABAP如何在调试查看EXPORT/IMPORT 内存数据

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP如何在调试查看E ...

  3. 如何为Redis中list中的项设置过期时间

    问题 两种解决方法 有序集合 多个集合以及TTL Redis是一个伟大的工具,用来在内存中存储列表是很合适的. 不过,如果你想要快速搜索列表,同时需要让列表中每项都在一定时间后过期,应该怎么做呢? 首 ...

  4. 白盒测试笔记之:Junit 单元测试以及测试覆盖率

    单元测试: 单元测试是从代码层面验证代码的正确性. 一般考虑接口中的数据结构是否正确,变量的临界条件,如空字符串,空集合等. ​ Junit入门  参考: Junit 入门教程: https://ww ...

  5. Python pip升级及升级失败解决方案

    本教程用于Python  pip升级及失败解决方案 首先查看脚本 pip show pip 我已经升级到了最新的版本 安装其他模块过程中出现下面提示,便说明你需要升级pip You are using ...

  6. Windows 10 搭建 Django 环境(详细教程)

    Windows 10 搭建 Django 环境(详细教程) https://blog.csdn.net/HappyLittleMouse/article/details/81360272#1.%20P ...

  7. [转帖]Intro Guide to Dockerfile Best Practices

    Intro Guide to Dockerfile Best Practices By Tibor Vass July 02 2019    https://blog.docker.com/2019/ ...

  8. PostgreSQL查看等待锁的SQL和进程

    查看等待锁的查询和进程: The following query may be helpful to see what processes are blocking SQL statements (t ...

  9. APP_测试流程(测试点)

    1 APP测试基本流程 1.1流程图 1.2测试周期 测试周期可按项目的开发周期来确定测试时间,一般测试时间为两三周(即15个工作日),根据项目情况以及版本质量可适当缩短或延长测试时间. 1.3测试资 ...

  10. 从入门到自闭之Python整型,字符串以及for循环

    Day 01 整型: 对比: 在python 2 版本中有整型,长整型long 在python 3 版本中全部都是整型 用于计算和比较 整型和布尔值的转换 二进制转换成十进制: ​ print (in ...