luogu P1224 [NOI2013]向量内积
挺有意思的一道题
暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分
然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向量\(i\),假如前面所有向量和他的内积为\(1\),那么所有内积之和应该要和\(i-1\)模\(2\)同余,所以如果某个\(i\)不满足这个条件,就可以\(O(nd)\)的找出前面和他内积为\(0\)的向量.而内积之和可以看成当前向量和前面所有向量之和的内积,所以维护好前面向量的和,每次前缀和的当前的内积,复杂度为\(O(nd)\)
然后\(k=3\),内积不为\(0\),则可能为\(1,2\),然后可以发现\(1,2\)的平方模\(3\)是\(1\),那么判断条件就是前面内积平方和是否和\(i-1\)模\(3\)同余.前面内积平方和就是$$\sum_{j}(\sum_{k=1}{d}a_{i,k}a_{j,k})2$$$$\sum_{j}\sum_{k=1}{d}\sum_{l=1}{d}a_{i,k}a_{j,k}a_{i,l}a_{j,l}$$$$\sum_{k=1}{d}\sum_{l=1}{d}a_{i,k}a_{i,l}\sum_{j}a_{j,k}a_{j,l}$$
维护后面那个前缀和就行了
注意可能会出现所有内积之和和\(i-1\)模\(k\)同余,那么我们需要把序列随机打乱后多做几遍
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define il inline
using namespace std;
const int N=1e5+10,M=100+10;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,d,kk,p[N],a[N][M];
int b[M];
int ck(int i)
{
int sm=0;
for(int k=1;k<=d;++k) sm=(sm+a[i][k]*b[k])%kk;
return sm;
}
int c[M][M];
int ckk(int i)
{
int sm=0;
for(int k=1;k<=d;++k)
for(int l=1;l<=d;++l)
sm=(sm+a[i][k]*a[i][l]*c[k][l])%kk;
return sm;
}
int main()
{
n=rd(),d=rd(),kk=rd();
for(int i=1;i<=n;++i) p[i]=i;
for(int i=1;i<=n;++i)
for(int j=1;j<=d;++j)
a[i][j]=rd()%kk;
int Q=5;
while(Q--)
{
random_shuffle(p+1,p+n+1);
if(kk==2) memset(b,0,sizeof(b));
else memset(c,0,sizeof(c));
for(int i=1;i<=n;++i)
{
if((kk==2?ck(p[i]):ckk(p[i]))!=(i-1)%kk)
{
for(int j=1;j<i;++j)
{
int sm=0;
for(int k=1;k<=d;++k) sm=(sm+a[p[i]][k]*a[p[j]][k])%kk;
if(!sm)
{
int x=min(p[i],p[j]),y=max(p[i],p[j]);
printf("%d %d\n",x,y);
return 0;
}
}
}
if(kk==2)
{
for(int k=1;k<=d;++k) b[k]=(b[k]+a[p[i]][k])%kk;
}
else
{
for(int k=1;k<=d;++k)
for(int l=1;l<=d;++l)
c[k][l]=(c[k][l]+a[p[i]][k]*a[p[i]][l])%kk;
}
}
}
puts("-1 -1");
return 0;
}
luogu P1224 [NOI2013]向量内积的更多相关文章
- P1224 [NOI2013]向量内积
传送门 发现这个内积和矩乘有点像,考虑构造一个 $n$ 行 $m$ 列的矩阵 $A$,每一行都是一个题目给定的 $m$ 维向量 设 $B=AA^T$ ,其中 $A^T$ 为 $A$ 的转置矩阵,那么对 ...
- 洛谷 P1224 - [NOI2013] 向量内积(随机化)
洛谷题面传送门 一道很神的随机化. 首先由于我们要求向量点乘 \(\bmod k\) 的值,因此我们可以将所有 \(x_{i,j}\) 都模上 \(k\),显然该操作不影响结果正确性. 注意到这里的 ...
- 【fake题解】[NOI2013]向量内积
[fake题解][NOI2013]向量内积 做法1 大暴力.哪里不会T哪里. 做法2 所有数都%=k不影响结果.(废话 k的取值只有2和3,所以肯定是要分类讨论的.k=2肯定简单些啦. k=2 出现的 ...
- [Noi2013]向量内积
来自FallDream的博客,未经允许,请勿转载,谢谢. 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: $\sum_{i=1 ...
- 3243: [Noi2013]向量内积 - BZOJ
Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...
- 【uoj121】 NOI2013—向量内积
http://uoj.ac/problem/121 (题目链接) 题意 给出${n}$个${d}$维向量,问是否有两个不同的向量的内积是${k}$的倍数. Solution 又卡了一上午常数,我弃了T ...
- bzoj 3243: [Noi2013]向量内积
Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...
- BZOJ3243/UOJ121 [Noi2013]向量内积
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- BZOJ3243 NOI2013向量内积(随机化)
考虑奇技淫巧. 首先是k=2.对向量维护一个前缀和,每次将当前向量与前缀和点乘.如果点乘结果不等于i-1&1,说明当前向量至少和之前的某个向量的数量积是2的倍数,暴力找就可以了.当然等于i-1 ...
随机推荐
- K8S简介
简介 Kubernetes是一个开源的,用于管理云平台中多个主机上的容器化的应用,Kubernetes的目标是让部署容器化的应用简单并且高效(powerful),Kubernetes提供了应用部署,规 ...
- Netty 介绍和应用场景(一)
1.为什么选择Netty 需要了解了Socket通信(IO/NIO/AIO)编程,对于通信模型已经有了一个基本的认识.,果想把这些真正的用于实际工作中,那么还需要不断的完善.扩展和优化.比如经典的TC ...
- ArrayList遍历的三种方法
在输出很多的ArrayList的元素时,用普通的for循环太麻烦,因此本文介绍三种遍历ArrayList的方法 package test; public class Student { private ...
- jQuery_完成复选框的全选与全不选
别的不多说,直接上代码,用于完成复选框的全选与全不选. <!DOCTYPE html> <html> <head> <meta charset="U ...
- StringTokenizer工具类的使用
package stringtokenizer.java; import java.util.StringTokenizer; public class stringtokenizer { publi ...
- D2. Equalizing by Division (hard version)
D2. Equalizing by Division (hard version) 涉及下标运算一定要注意下标是否越界!!! 思路,暴力判断以每个数字为到达态最小花费 #include<bits ...
- Linux安装配置redis 、启动redis、redis设置密码
由于间隔时间较长.机器的环境不同等等原因,所以每次安装redis的时候总是不那么顺利,所以这次我要做个笔记 文章大部分内容源于https://blog.csdn.net/gisredevelopmen ...
- Iterator(遍历器) 和 for...of 循环
是generator的前置知识 generator :https://www.cnblogs.com/wangtong111/p/11322961.html 遍历器(Iterator)就是这样一种机制 ...
- @清晰掉 Sizeof与字符串
Sizeof与字符串 1.以字符串形式出现的,编译器都会为该字符串自动添加一个0作为结束符 如在代码中写 "abc",那么编译器帮你存储的是"abc/0" 2 ...
- NLP大赛冠军总结:300万知乎多标签文本分类任务(附深度学习源码)
NLP大赛冠军总结:300万知乎多标签文本分类任务(附深度学习源码) 七月,酷暑难耐,认识的几位同学参加知乎看山杯,均取得不错的排名.当时天池AI医疗大赛初赛结束,官方正在为复赛进行平台调 ...