bzoj1098题解
【题意分析】
给你一张无向图,求其补图的联通块数及各个联通块大小。
【解题思路】
暴搜!
然而n2会T怎么办?
仔细观察发现m远小于n2,也就是说这是一张极其稠密的补图。
这时就要用到黑科技了:floodfill!
用邻接表维护原图的边,用链表维护当前剩余可选点,每次从队首出发从链表里找补图的边,把这些边对应的点入队并从链表里删去。
这样,我们构造一种最坏的情况来卡这个算法:
假设前m/n个点每个点都只和一个点不相连,这样对于每个点都要遍历链表中的所有点,此时复杂度是O((m/n)*n)=O(m)。
因为前面已经把m条边都分配完了,接下来的第一个点就O(n)把链表清空了。之后的点全都是O(1)发现链表已被清空。
这样总复杂度就是O(m+n)了。
【参考代码】
#include <bits/stdc++.h>
#define range(i,c,o) for(register int i=(c);i<(o);++i)
#define dange(i,c,o) for(register int i=(c);i>(o);--i)
#define forin(i,t,p) for(t:: iterator i=p. begin();i!=p. end();++i)
#define dorin(i,t,p) for(t::reverse_iterator i=p.rbegin();i!=p.rend();++i)
using namespace std; #define __debug
#ifdef __debug
#define Function(type) type
#define Procedure void
#else
#define Function(type) __attribute__((optimize("-O2"))) inline type
#define Procedure __attribute__((optimize("-O2"))) inline void
#endif #ifdef __int128_t
typedef __int128_t integer;
#else
typedef long long integer;
#endif //quick_io {
Function(integer) getint()
{
char c=getchar(); for(;!isdigit(c)&&c!='-';c=getchar());
short s=; for(;c=='-';c=getchar()) s*=-; integer r=;
for(;isdigit(c);c=getchar()) (r*=)+=c-''; return s*r;
}
//} quick_io static int n=getint(); //list {
int suc[],pre[];
Procedure clear()
{
range(i,,n+) suc[i]=i+,pre[i]=i-;
suc[]=,pre[n+]=n;
}
Procedure erase(const int&x)
{
pre[suc[x]]=pre[x],suc[pre[x]]=suc[x];
}
//} list bool tag[]={},vis[]={};
vector<int> edg[]; queue<int> que;
Function(int) floodfill(const int&rt)
{
int ret=; erase(rt);
for(que.push(rt);!que.empty();que.pop())
{
int fr=que.front(); vis[fr]=,++ret;
forin(i,vector<int>,edg[fr]) tag[*i]=;
for(int i=suc[];i<=n;i=suc[i])
{
if(!tag[i]) erase(i),que.push(i);
}
forin(i,vector<int>,edg[fr]) tag[*i]=;
}
return ret;
} int rec[];
int main()
{
for(int m=getint();m--;)
{
int u=getint(),v=getint();
edg[u].push_back(v),edg[v].push_back(u);
}
clear(); int cnt=;
range(i,,n+) if(!vis[i]) rec[cnt++]=floodfill(i);
sort(rec,rec+cnt),printf("%d\n",cnt);
range(i,,cnt) printf("%d ",rec[i]);
return putchar('\n'),;
}
bzoj1098题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- layui-treeTable v2.0添加搜索功能
layui-treeTable 添加搜索功能 在树形表格头部加一个input框: <div class="layui-inline"> <input class= ...
- CDN技术之--该技术概述
CDN关键技术:1. 缓存算法[Squid]:2. 分发能力:3. 负载均衡[Nginx](4. 基于DNS[BIND]):5. 支持协议: 缓存算法决定命中率.源服务器压力.POP节点存储能力分发能 ...
- 有关JWT(Json Web Token)的那些事
用户认证是计算机安全领域一个永恒的热点话题,然而你会发现,开发者很少讨论有关Json Web Token的话题,其实使用Json Web Token集成到API身份验证机制中是容易,本文给大家普及基础 ...
- 使用python实现希尔、计数、基数排序
希尔排序 希尔排序是一个叫希尔的数学家提出的一种优化版本的插入排序. 首先取一个整数d1=n//2,将元素分为d1个组,每组相邻元素之间的距离为d1,在各组内进行直接插入排序. 取第二个整数d2=d1 ...
- TTL 与 CMOS
Frm: https://blog.csdn.net/qq_27745395/article/details/76687175 http://baijiahao.baidu.com/s?id=1598 ...
- jwt认证登录
配置文件:#服务配置 server: port: 9002 #spring配置 spring: #应用配置 application: name: ynhrm-system #指定服务名 #数据库连接池 ...
- 现在就去100offer 参加互联网人才拍卖! 现在登录现在注册 为什么整个互联网行业都缺前端工程师?
现在,几乎整个互联网行业都缺前端工程师,不仅在刚起步的创业公司,上市公司乃至巨头,这个问题也一样存在.没错,优秀的前端工程师简直比大熊猫还稀少. 每天,100offer的HR群都有人在吐槽招不到前端工 ...
- HBase 热点问题——rowkey散列和预分区设计
热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作).大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响 ...
- leetcode.数组.565数组嵌套-Java
1. 具体题目 索引从0开始长度为N的数组A,包含0到N - 1的所有整数.找到并返回最大的集合S,S[i] = {A[i], A[A[i]], A[A[A[i]]], ... }且遵守以下的规则.假 ...
- python_模块 collections,random
collections模块 在内置数据类型(dict.list.set.tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter.deque.defaultdict. ...