伟大的GIL
GIL
首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL。
GIL存在的原因:
由于物理上得限制,各CPU厂商在核心频率上的比赛已经被多核所取代。为了更有效的利用多核处理理器的性能,就出现了多线程的编程方式,而随之带来的就是线程间数据一致性和状态同步的困难。即使在CPU内部的Cache也不例外,为了有效解决多份缓存之间的数据同步时各厂商花费了不少心思,也不可避免的带来了一定的性能损失。
Python当然也逃不开,为了利用多核,Python开始支持多线程。而解决多线程之间数据完整性和状态同步的最简单方法自然就是加锁。 于是有了GIL这把超级大锁,而当越来越多的代码库开发者接受了这种设定后,他们开始大量依赖这种特性(即默认python内部对象是thread-safe的,无需在实现时考虑额外的内存锁和同步操作)。
慢慢的这种实现方式被发现是蛋疼且低效的。但当大家试图去拆分和去除GIL的时候,发现大量库代码开发者已经重度依赖GIL而非常难以去除了。有多难?做个类比,像MySQL这样的“小项目”为了把Buffer Pool Mutex这把大锁拆分成各个小锁也花了从5.5到5.6再到5.7多个大版为期近5年的时间,本且仍在继续。MySQL这个背后有公司支持且有固定开发团队的产品走的如此艰难,那又更何况Python这样核心开发和代码贡献者高度社区化的团队呢?
所以简单的说GIL的存在更多的是历史原因。如果推到重来,多线程的问题依然还是要面对,但是至少会比目前GIL这种方式会更优雅。
GIL的影响:
在单核情况下,python 的GIL锁是完全没有问题的,但是有多个cpu的时候,对于一个进程,同一时间只有一个线程获得GIL锁,并将计算交给cpu执行,这就意味着双核cpu对于python来说完全没有用到。即对于计算密集形的并发使用多线程是不可选的。
#coding:utf8
from threading import Thread
import time def counter():
i = 0
for _ in range(50000000):
i = i + 1 return True def main(): l=[]
start_time = time.time() for i in range(2): t = Thread(target=counter)
t.start()
l.append(t)
t.join() # for t in l:
# t.join() end_time = time.time()
print("Total time: {}".format(end_time - start_time)) if __name__ == '__main__':
main() '''
py2.7:
串行:25.4523348808s
并发:31.4084379673s
py3.5:
串行:8.62115597724914s
并发:8.99609899520874s '''
计算密集型
针对这种计算密集型的高并发,也有人给出了相应的解决办法,就是multiprocessing模块。
用multiprocessing替代Thread multiprocessing库的出现很大程度上是为了弥补thread库因为GIL而低效的缺陷。它完整的复制了一套thread所提供的接口方便迁移。唯一的不同就是它使用了多进程而不是多线程。每个进程有自己的独立的GIL,因此也不会出现进程之间的GIL争抢。
#coding:utf8
from multiprocessing import Process
import time def counter():
i = 0
for _ in range(40000000):
i = i + 1 return True def main(): l=[]
start_time = time.time() for _ in range(2):
t=Process(target=counter)
t.start()
l.append(t)
#t.join() for t in l:
t.join() end_time = time.time()
print("Total time: {}".format(end_time - start_time)) if __name__ == '__main__':
main() ''' py2.7:
串行:6.1565990448 s
并行:3.1639978885 s py3.5:
串行:6.556925058364868 s
并发:3.5378448963165283 s '''
优化
当然multiprocessing也不是万能良药。它的引入会增加程序实现时线程间数据通讯和同步的困难。就拿计数器来举例子,如果我们要多个线程累加同一个变量,对于thread来说,申明一个global变量,用thread.Lock的context包裹住三行就搞定了。而multiprocessing由于进程之间无法看到对方的数据,只能通过在主线程申明一个Queue,put再get或者用share memory的方法。这个额外的实现成本使得本来就非常痛苦的多线程程序编码,变得更加痛苦了。
总结:因为GIL的存在,只有IO Bound场景下得多线程会得到较好的性能 - 如果对并行计算性能较高的程序可以考虑把核心部分也成C模块,或者索性用其他语言实现 - GIL在较长一段时间内将会继续存在,但是会不断对其进行改进。
GIL就像是强奸,既然不能反抗,就尽情的享受吧。
同步锁(lock):
import time
import threading def addNum():
global num #在每个线程中都获取这个全局变量
#num-=1 temp=num
time.sleep(0.1)
num =temp-1 # 对此公共变量进行-1操作 num = 100 #设定一个共享变量 thread_list = [] for i in range(100):
t = threading.Thread(target=addNum)
t.start()
thread_list.append(t) for t in thread_list: #等待所有线程执行完毕
t.join() print('Result: ', num)
没有加锁
import threading R=threading.Lock() R.acquire()
'''
对公共数据的操作
'''
R.release()
死锁和递归锁:
是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。
import threading
import time mutexA = threading.Lock()
mutexB = threading.Lock() class MyThread(threading.Thread): def __init__(self):
threading.Thread.__init__(self) def run(self):
self.fun1()
self.fun2() def fun1(self): mutexA.acquire() # 如果锁被占用,则阻塞在这里,等待锁的释放 print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time())) mutexB.acquire()
print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time()))
mutexB.release()
mutexA.release() def fun2(self): mutexB.acquire()
print ("I am %s , get res: %s---%s" %(self.name, "ResB",time.time()))
time.sleep(0.2) mutexA.acquire()
print ("I am %s , get res: %s---%s" %(self.name, "ResA",time.time()))
mutexA.release() mutexB.release() if __name__ == "__main__": print("start---------------------------%s"%time.time()) for i in range(0, 10):
my_thread = MyThread()
my_thread.start()
死锁
在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁。
mutex = threading.RLock()
event对象:
线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就 会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行。
event.isSet():返回event的状态值; event.wait():如果 event.isSet()==False将阻塞线程; event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度; event.clear():恢复event的状态值为False。
import threading
import time
import logging logging.basicConfig(level=logging.DEBUG, format='(%(threadName)-10s) %(message)s',) def worker(event):
logging.debug('Waiting for redis ready...')
event.wait()
logging.debug('redis ready, and connect to redis server and do some work [%s]', time.ctime())
time.sleep(1) def main():
readis_ready = threading.Event()
t1 = threading.Thread(target=worker, args=(readis_ready,), name='t1')
t1.start() t2 = threading.Thread(target=worker, args=(readis_ready,), name='t2')
t2.start() logging.debug('first of all, check redis server, make sure it is OK, and then trigger the redis ready event')
time.sleep(3) # simulate the check progress
readis_ready.set() if __name__=="__main__":
main()
event
hreading.Event的wait方法还接受一个超时参数,默认情况下如果事件一致没有发生,wait方法会一直阻塞下去,而加入这个超时参数之后,如果阻塞时间超过这个参数设定的值之后,wait方法会返回。对应于上面的应用场景,如果Redis服务器一致没有启动,我们希望子线程能够打印一些日志来不断地提醒我们当前没有一个可以连接的Redis服务,我们就可以通过设置这个超时参数来达成这样的目的:
def worker(event):
while not event.is_set():
logging.debug('Waiting for redis ready...')
event.wait(2)
logging.debug('redis ready, and connect to redis server and do some work [%s]', time.ctime())
time.sleep(1)
信号量Semaphore:
Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。
import threading
import time semaphore = threading.Semaphore(5) def func():
if semaphore.acquire():
print (threading.currentThread().getName() + ' get semaphore')
time.sleep(2)
semaphore.release() for i in range(20):
t1 = threading.Thread(target=func)
t1.start()
一次只能有5个进程获得信号量
队列queue:
''' 创建一个“队列”对象 import Queue
q = Queue.Queue(maxsize = 10)
Queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数
maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。 将一个值放入队列中
q.put(10)
调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目的值;
第二个block为可选参数,默认为
1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0,
put方法将引发Full异常。 将一个值从队列中取出
q.get()
调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且
block为True,get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。 '''
'''
join() 阻塞进程,直到所有任务完成,需要配合另一个方法task_done。 def join(self):
with self.all_tasks_done:
while self.unfinished_tasks:
self.all_tasks_done.wait() task_done() 表示某个任务完成。每一条get语句后需要一条task_done。 import queue
q = queue.Queue(5)
q.put(10)
q.put(20)
print(q.get())
q.task_done()
print(q.get())
q.task_done() q.join() print("ending!")
'''
''' Python Queue模块有三种队列及构造函数: 1、Python Queue模块的FIFO队列先进先出。 class queue.Queue(maxsize)
2、LIFO类似于堆,即先进后出。 class queue.LifoQueue(maxsize)
3、还有一种是优先级队列级别越低越先出来。 class queue.PriorityQueue(maxsize) import queue #先进后出 q=queue.LifoQueue() q.put(34)
q.put(56)
q.put(12) #优先级
q=queue.PriorityQueue()
q.put([5,100])
q.put([7,200])
q.put([3,"hello"])
q.put([4,{"name":"alex"}]) while 1:
data=q.get()
print(data) '''
multiprocessing模块:
由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。
# Process类调用 from multiprocessing import Process
import time
def f(name): print('hello', name,time.ctime())
time.sleep(1) if __name__ == '__main__':
p_list=[]
for i in range(3):
p = Process(target=f, args=('alvin:%s'%i,))
p_list.append(p)
p.start()
for i in p_list:
p.join()
print('end') # 继承Process类调用
from multiprocessing import Process
import time class MyProcess(Process):
def __init__(self):
super(MyProcess, self).__init__()
# self.name = name def run(self): print ('hello', self.name,time.ctime())
time.sleep(1) if __name__ == '__main__':
p_list=[]
for i in range(3):
p = MyProcess()
p.start()
p_list.append(p) for p in p_list:
p.join() print('end')
进程调用
process类详解:
构造方法:
Process([group [, target [, name [, args [, kwargs]]]]])
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 进程名;
args/kwargs: 要传入方法的参数。
实例方法:
is_alive():返回进程是否在运行。
join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的timeout(可选参数)。
start():进程准备就绪,等待CPU调度
run():strat()调用run方法,如果实例进程时未制定传入target,这star执行t默认run()方法。
terminate():不管任务是否完成,立即停止工作进程
属性:
daemon:和线程的setDeamon功能一样
name:进程名字。
pid:进程号
from multiprocessing import Process
import os
import time
def info(name): print("name:",name)
print('parent process:', os.getppid())
print('process id:', os.getpid())
print("------------------")
time.sleep(1) def foo(name): info(name) if __name__ == '__main__': info('main process line') p1 = Process(target=info, args=('alvin',))
p2 = Process(target=foo, args=('egon',))
p1.start()
p2.start() p1.join()
p2.join() print("ending")
进程应用
伟大的GIL的更多相关文章
- 关于GIL
1同一时刻只有一个线程通过一个线程到解释器运行 2在多核上会有些不一样 不仅仅会降低python的效率 并且还会影响到整个机器系统的效率 python的gil是每100条cpu指令开始check 如果 ...
- Python GIL 多线程机制 (C source code)
最近阅读<Python源码剖析>对进程线程的封装解释: GIL,Global Interpreter Lock,对于python的多线程机制非常重要,其如何实现的?代码中实现如下: 指向一 ...
- 线程安全及Python中的GIL
线程安全及Python中的GIL 本博客所有内容采用 Creative Commons Licenses 许可使用. 引用本内容时,请保留 朱涛, 出处 ,并且 非商业 . 点击 订阅 来订阅本博客. ...
- GIL与线程互斥锁
GIL 是解释器级别的锁,是限制只有一个原生线程运行,防止多个原生线程之间修改底层的共享数据.而线程互斥锁是防止多个线程同时修改python内存空间的共享数据.
- Python中的GIL
•start 线程准备就绪,等待CPU调度 •setName 为线程设置名称 •getName 获取线程名称 •setDaemon 设置为后台线程或前台线程(默认) 如果是后台线程,主线程执行过程中, ...
- Python之路-python(paramiko,进程和线程的区别,GIL全局解释器锁,线程)
一.paramiko 二.进程.与线程区别 三.python GIL全局解释器锁 四.线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生 ...
- Python自动化 【第九篇】:Python基础-线程、进程及python GIL全局解释器锁
本节内容: 进程与线程区别 线程 a) 语法 b) join c) 线程锁之Lock\Rlock\信号量 d) 将线程变为守护进程 e) Event事件 f) queue队列 g) 生 ...
- 【转】Python中的GIL、多进程和多线程
转自:http://lesliezhu.github.io/public/2015-04-20-python-multi-process-thread.html 目录 1. GIL(Global In ...
- [转载] Python的GIL是什么鬼,多线程性能究竟如何
原文: http://cenalulu.github.io/python/gil-in-python/ GIL是什么 首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器( ...
- python中的gil是什么?
1.gil是什么? 在Python源代码:Python-2.7.10/Python/ceval.c.我看到的Python源代码版本为2.7.10 static PyThread_type_lock i ...
随机推荐
- Java数据结构之排序---快速排序
快速排序是对冒泡排序的一种改进. 快速排序的基本思想: 假设我们以升序为例,它的执行流程可以概括为,每一趟选择当前所有子序列中的一个关键字(通常我们选择第一个,下述代码实现选择的也是第一个数)作为枢纽 ...
- Flume的断点续传解决
根据需求,首先定义以下3大要素 采集源,即source——监控文件内容更新 : exec ‘tail -F file’ 下沉目标,即sink——HDFS文件系统 : hdfs sink Sou ...
- 使用SharpZIpLib写的压缩解压操作类
使用SharpZIpLib写的压缩解压操作类,已测试. public class ZipHelper { /// <summary> /// 压缩文件 /// </summary&g ...
- k8s编辑pod配置信息
kubectl edit deployment devops-service -n c7n-system
- C++ 左值与右值
https://baike.baidu.com/item/%E5%B7%A6%E5%80%BC%E4%B8%8E%E5%8F%B3%E5%80%BC/5537417?fr=aladdin https: ...
- 十六、对RF中ROBOT_LIBRARY_SCOPE = 'GLOBAL'进行分析
(1)ROBOT_LIBRARY_SCOPE属于ROBOT库范围,这个范围有三个等级,分别是TEST CASE.TEST SUITE.GLOBAL三个等级,默认是TEST CASE:GLOBAL这个等 ...
- 使用ffmpeg来转换media Video
FFMPEG -i 1.wmv -c:v libx264 -strict -2 1_wmv.mp4 ffmpeg -i b.mp4 -codec copy -bsf h264_mp4toannexb ...
- OpenStack Nova 高性能虚拟机之 CPU 绑定
目录 文章目录 目录 前文列表 KVM KVM 的功能列表 KVM 工具集 KVM 虚拟机的本质是什么 vCPU 的调度与性能问题 Nova 支持的 vCPU 绑定 vcpu\_pin\_set 配置 ...
- C#正则的使用
c#使用正则表达式要用到System.Text.RegularExprssions命名空间 官方API Regex类是用于匹配表达式: 通常Regex分为静态类和实例化俩种方式.那这俩种有什么区别呢, ...
- 【RequestContext】关于RequestContext的一些小心得
版权声明:随意转载,注明出处 https://blog.csdn.net/River_Continent/article/details/77511389后台传参,一直是一个比较重要的地方,如果涉及W ...