MT【287】余弦的线性组合
(2017北大特优)在$\Delta ABC$中,$cos A+\sqrt{2}cos B+\sqrt{2}cos C$的最大值____
解答 :2
$cos A+\sqrt{2}cos B+\sqrt{2}cos C$
$=cos A+2\sqrt{2}cos\dfrac{B+C}{2}cos\dfrac{B-C}{2}\le1-2sin^2\dfrac{A}{2}+2\sqrt{2}sin\dfrac{A}{2}\le2$
提示:$p\cos\alpha+q\cos\beta+r\cos\gamma\le\dfrac{1}{2}\sum\limits_{cyc}\dfrac{qr}{p}$
嵌入不等式:$$2yzcosA+2zxcosB+2xycosC\le x^2+y^2+z^2$$中令$(x,y,z)=(\sqrt{\dfrac{qr}{p}},\sqrt{\dfrac{rp}{q}},\sqrt{\dfrac{pq}{r}})$即得.
MT【287】余弦的线性组合的更多相关文章
- MT【34】正余弦的正整数幂次快速表示成正余弦的线性组合
问题:如何快速把$cos^4xsin^3x$表示成正弦,余弦的线性组合? 分析:利用牛顿二项式展开以下表达式: 再利用欧拉公式$e^{i\theta}=cos\theta+isin\theta$ 比如 ...
- MT【187】余弦的线性组合
已知$\alpha+\beta+\gamma=\pi,(\alpha,\beta,\gamma\ge0)$ 求:$3\cos\alpha+4\cos\beta+5\cos\gamma$的最大值____ ...
- 小波变换(wavelet transform)的通俗解释(一)
小波变换 小波,一个神奇的波,可长可短可胖可瘦(伸缩平移),当去学习小波的时候,第一个首先要做的就是回顾傅立叶变换(又回来了,唉),因为他们都是频率变换的方法,而傅立叶变换是最入门的,也是最先了解的, ...
- MT【300】余弦的三倍角公式
2017清华大学THUSSAT附加学科测试数学(二测)$\cos^5\dfrac{\pi}{9}+\cos^5\dfrac{5\pi}{9}+\cos^5\dfrac{7\pi}{9}$ 的值为___ ...
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
- 287. Find the Duplicate Number hard
287. Find the Duplicate Number hard http://www.cnblogs.com/grandyang/p/4843654.html 51. N-Queens h ...
- Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离
Atitti knn实现的具体四个距离算法 欧氏距离.余弦距离.汉明距离.曼哈顿距离 1. Knn算法实质就是相似度的关系1 1.1. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领 ...
- /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题
一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1) 打开项目的Property Pages对话框 2) 点击左侧C/C ...
- C#——Dictionary<TKey, TValue> 计算向量的余弦值
说明:三角函数的余弦值Cos我想,每个学计算机的理工人都知道,但是真的明白它的用途,我也是刚明白.每个人在初中或者高中的时候,都有这么个疑惑,学三角函数干什么用的?很直白的答案就是考试用的.而且当时的 ...
随机推荐
- UVA 10820 欧拉函数模板题
这道题就是一道简单的欧拉函数模板题,需要注意的是,当(1,1)时只有一个,其他的都有一对.应该对欧拉函数做预处理,显然不会超时. #include<iostream> #include&l ...
- XGBoost模型的参数调优
XGBoost算法在实际运行的过程中,可以通过以下要点进行参数调优: (1)添加正则项: 在模型参数中添加正则项,或加大正则项的惩罚力度,即通过调整加权参数,从而避免模型出现过拟合的情况. (2)控制 ...
- EF内容记录_EF连接Mysql版本问题
EF连接MySQL可用版本,由于EF.MySQLConnection.mysql-for-visualstudio.VS版本.MySQL.Data.MySQL.Data.Entity版本问题较花时间, ...
- python安装与使用(Windows)
日常使用PHP开发较多,但是有些地方PHP的语言的瓶颈就显露出来了,例如,同样是抓取一个网站的内容,使用PHP需要较为复杂的正则匹配,效率较为低下.python具有丰富的类库,拿过来直接可以使用,功能 ...
- array_filter、array_walk、array_map的区别
<?php $arr=array( 1,2,3,4,5,6 ); function filter($var){ if($var%2==0) return true; } $data=array_ ...
- [转帖]Huge Page 是否是拯救性能的万能良药?
Huge Page 是否是拯救性能的万能良药? 本文将分析是否Huge Page在任何条件下(特别是NUMA架构下)都能带来性能提升. 文章欢迎转载,但转载时请保留本段文字,并置于文章的顶部 作者:卢 ...
- python 获取列表中次大的数值.
需求: 1.写个函数,把一组数字传到函数中,然后取出最大值和次大值. 2.不能使用排序函数. 分析: Q: list = [100,50,60,70,30,45] 怎么从这个列表中取出最大值? A: ...
- AngularJS 中的 factory、 service 和 provider区别,简单易懂
转自:http://blog.csdn.net/ywl570717586/article/details/51306176 初学 AngularJS 时, 肯定会对其提供 factory . serv ...
- windows环境下的git安装及使用
昨天晚上,我用了一个半小时整github,为了便于他人能快速的安装使用,也为了回顾一下自己痛苦的过程,特意写下这篇博客.好的,让我们开始吧.... 我的环境:win10,msysgit1.9.4.0 ...
- java学习之—数组的曾删改查
/** * 数组的曾删改查 * Create by Administrator * 2018/6/8 0008 * 上午 9:54 **/ public class HighArray { priva ...