【BZOJ1211】【HNOI2004】树的计数 prufer序列
题目描述
给你\(n\)和\(n\)个点的度数,问你有多少个满足度数要求的生成树。
无解输出\(0\)。保证答案不超过\({10}^{17}\)。
\(n\leq 150\)
题解
考虑prufer序列。
答案为
\]
直接乘会爆long long,要转成\(n-1\)个组合数的乘积。当然你也可以分解质因数。
如果\(n\neq 1\)且\(d_i=1\),输出\(0\)
如果\(\sum d_i\neq 2n-2\),输出\(0\)
时间复杂度:\(O(n^2)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
ll c[200][200];
int d[200];
int main()
{
int n;
scanf("%d",&n);
int i,j;
int sum=0;
for(i=1;i<=n;i++)
{
scanf("%d",&d[i]);
if(n!=1&&d[i]<=0)
{
printf("0\n");
return 0;
}
sum+=d[i];
}
if(sum!=2*n-2)
{
printf("0\n");
return 0;
}
for(i=0;i<=n;i++)
{
c[i][0]=1;
for(j=1;j<=i;j++)
c[i][j]=c[i-1][j]+c[i-1][j-1];
}
ll ans=1;
ll s=0;
for(i=1;i<=n;i++)
{
ans*=c[s+d[i]-1][d[i]-1];
s+=d[i]-1;
}
printf("%lld\n",ans);
return 0;
}
【BZOJ1211】【HNOI2004】树的计数 prufer序列的更多相关文章
- bzoj1211: [HNOI2004]树的计数 prufer序列裸题
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...
- BZOJ1211: [HNOI2004]树的计数(prufer序列)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2987 Solved: 1111[Submit][Status][Discuss] Descript ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
- 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度
[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...
- [HNOI2004] 树的计数 - prufer序列
给定树每个节点的 degree,问满足条件的树的数目. \(n\leq 150, ans \leq 10^{17}\) Solution 注意特判各种坑点 \(\sum d_i - 1 = n-2\) ...
- 树的计数 + prufer序列与Cayley公式(转载)
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...
- bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)
1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...
- prufer BZOJ1211: [HNOI2004]树的计数
以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...
随机推荐
- POJ 2406 Power Strings(KMP)
Description Given two strings a and b we define a*b to be their concatenation. For example, if a = & ...
- 2018 Multi-University Training Contest 2
题目链接:2018 Multi-University Training Contest 2 6318 Swaps and Inversions 题意:sum=x*逆序个数+交换次数*y,使sum最小 ...
- Vicious Keyboard CodeForces - 801A (暴力+模拟)
题目链接 题意: 给定一个字符串,最多更改一个字符,问最多可以有多少个“VK”子串? 思路: 由于数据量很小,不妨尝试暴力写.首先算出不更改任何字符的情况下有多个VK字串,然后尝试每一次更改一个位置的 ...
- T-shirt buying CodeForces - 799B (小根堆+STL)
题目链接 思路: 由于题目说了只有1,2,3,三种色号的衣服,然后开三个对应色号的小根堆, 我是根据pair<int,int> 创建了一个以价格小的优先的优先队列. pair中的另外一个i ...
- Django之admin中管理models中的表格
Django之admin中管理models中的表格 django中使用admin管理models中的表格时,如何将表格注册到admin中呢? 具体操作就是在项目文件夹中的app文件夹中的admin中注 ...
- JMeter中返回Json数据的处理方法(转)
Json 作为一种数据交换格式在网络开发,特别是 Ajax 与 Restful 架构中应用的越来越广泛.而 Apache 的 JMeter 也是较受欢迎的压力测试工具之一,但是它本身没有提供对于 Js ...
- html5-attr和prop
###1.什么是attrbute和property attribute(attr) html标签的预定义属性 checked html标签的自定义属性 a eg: <input ...
- IdentityServer4【QuickStart】之使用ClientCredentials流程保护API
使用ClientCredentials流程保护API 这个示例展示了使用IdentityServer中保护APIs的最基本的场景. 在这个场景中我们会定义一个API和一个想要访问它的客户端.客户端会在 ...
- 2017年前小纪(有关http的一些缓存理论知识)
position的top和bottom的区别:前者基准点定在top,后者基准点定在bottom. for-in 遍历属性的顺序不确定 手机端,line-height对光标大小非常有影响 有些css3属 ...
- liunx 运维知识三部分
一. 用户级用户组相关 二. 文件属性和链接知识及磁盘已满故障案例 三. 通配符 四. 特殊符号 五. 基础正则 六. 扩展正则 七. sed实践 八. awk实践