【BZOJ4033】【HAOI2015】树上染色 树形DP
题目描述
给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色。要求黑点两两之间的距离加上白点两两之间距离的和最大。问你最大的和是多少。
\(n\leq 2000\)
题解
我们考虑树形DP。
设\(f_{i,j}\)为以\(i\)为根的子树,染了\(j\)个黑点的最大收益。
若一条边的一端有\(s_1\)个点,选了\(j_1\)个黑点,另一端有\(s_2\)个点,选了\(j_2\)个黑点,那么这条边的贡献就是
\]
于是我们就可以从\(f_{x,i},f_{v,j}\)转移到\(f_{x,i+j}\)。
表面上看是\(O(n^3)\)的,因为要枚举选了几个黑点,实际上是\(O(n^2)\)的。
转移可以看成两边各选一个点,这个点\(x\)就是两边的点的lca。因为总共有\(O(n^2)\)个lca,所以就是\(O(n^2)\)的。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
ll upmin(ll &a,ll b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(ll &a,ll b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
struct graph
{
int v[5010];
int w[5010];
int t[5010];
int h[2010];
int n;
graph()
{
memset(h,0,sizeof h);
n=0;
}
void add(int x,int y,int z)
{
n++;
v[n]=y;
w[n]=z;
t[n]=h[x];
h[x]=n;
}
};
graph g;
ll f[2010][2010];
ll h[2010];
int s[2010];
int n,k;
void dfs(int x,int fa)
{
s[x]=1;
f[x][0]=f[x][1]=0;
int i,v,j,l;
for(i=g.h[x];i;i=g.t[i])
if(g.v[i]!=fa)
{
v=g.v[i];
dfs(v,x);
memset(h,0xc0,sizeof h);
for(j=0;j<=s[x]&&j<=k;j++)
for(l=0;l<=s[v]&&j+l<=k;l++)
if(n-k-s[v]+l>=0)
upmax(h[j+l],f[x][j]+f[v][l]+ll(g.w[i])*(ll(k-l)*l+ll(n-k-s[v]+l)*(s[v]-l)));
s[x]+=s[v];
for(j=0;j<=s[x]&&j<=k;j++)
f[x][j]=h[j];
}
}
int main()
{
scanf("%d%d",&n,&k);
int i,x,y,z;
for(i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
g.add(x,y,z);
g.add(y,x,z);
}
memset(f,0xc0,sizeof f);
dfs(1,0);
printf("%lld\n",f[1][k]);
return 0;
}
【BZOJ4033】【HAOI2015】树上染色 树形DP的更多相关文章
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
- BZOJ4033 HAOI2015 树上染色 【树上背包】
BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- [bzoj4033][HAOI2015]树上染色_树形dp
树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...
随机推荐
- Python全栈开发之路 【第四篇】:Python基础之函数
本节内容 函数def: 1.位置参数,默认参数 2.位置参数,关键参数 3.如果参数中出现 *users,传递的参数就可以不再是固定的个数, 传过来的所有元素进行打包成元组 *args,**kwarg ...
- python 获取gearbest地址库代码
import requests import json # 用来去掉多余的字符,并格式化 def geshihua(str): s = None if "/**/_get_country(& ...
- mysql 5.7:show_compatibility_56
show_compatibility_56 - rudy gao - CSDN博客 https://blog.csdn.net/rudygao/article/details/50403107 [SO ...
- JMeter中返回Json数据的处理方法(转)
Json 作为一种数据交换格式在网络开发,特别是 Ajax 与 Restful 架构中应用的越来越广泛.而 Apache 的 JMeter 也是较受欢迎的压力测试工具之一,但是它本身没有提供对于 Js ...
- [转帖]cnblog 新闻 : 亚太云计算市场报告:腾讯位列前五 份额首超谷歌
亚太云计算市场报告:腾讯位列前五 份额首超谷歌 投递人 itwriter 发布于 2019-03-18 12:06 评论(1) 有213人阅读 原文链接 [收藏] « » 美国市场研究机构 Syner ...
- [转帖]Vim 编辑器底端 [noeol], [dos] 的含义
Vim 编辑器底端 [noeol], [dos] 的含义 2012年11月28日 23:13:04 strongwangjiawei 阅读数:15484 https://blog.csdn.net/s ...
- Oracle列转行函数LISTAGG()
--Oracle列转行函数LISTAGG() with tb_temp as( select 'China' 国家,'Wuhan' 城市 from dual union all select 'Chi ...
- Ajax发送请求等待时弹出模态框等待提示
主要的代码分为两块,一个是CSS定义模态框,另一个是在Ajax中弹出模态框. 查看菜鸟教程中的模态框教程demo,http://www.runoob.com/try/try.php?filename= ...
- HTML4到HTML5
第一步: <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0.1//EN" "http://www.w3.org/TR/html ...
- C/S和B/S应用程序的区别
一.C/S和B/S介绍: 1.C/S介绍: Client/Server架构,即客户端/服务器架构.是大家熟知的软件系统体系结构,通过将任务合理分配到Client端和Server端,降低了系统的通讯开销 ...