SCOI 2015 Day1 简要题解
「SCOI2015」小凸玩矩阵
题意
一个 \(N \times M\)( $ N \leq M $ )的矩阵 $ A $,要求小凸从其中选出 $ N $ 个数,其中任意两个数字不能在同一行或同一列,现小凸想知道选出来的 $ N $ 个数中第 $ K $ 大的数字的最小值是多少。
$ 1 \leq K \leq N \leq M \leq 250, 1 \leq A_{i, j} \leq 10 ^ 9 $
题解
一道简单的网络流题。
不难发现第 \(K\) 大和第 \(N - K + 1\) 小是本质一样的。
所以就是要使得第 \(N - K + 1\) 小尽量小,那么我们二分这个最小值 \(min\) 就行了。
然后我们对于 \(A_{i, j} \le min\) 的点 \((i, j)\) 考虑,如果能从中选出至少 \(N - K + 1\) 个点就是合法的。
然后直接上二分图建模就行了。
用 Hungray 可以跑过去 ,但是更喜欢 Dinic 的复杂度。
所以最后复杂度就是 \(O(N^2 \log A)\) 的,轻松通过,甚至能跑更大范围。
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
using namespace std;
template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; }
inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
}
void File() {
#ifdef zjp_shadow
freopen ("2006.in", "r", stdin);
freopen ("2006.out", "w", stdout);
#endif
}
const int N = 255, inf = 0x3f3f3f3f;
int n, m, k, a[N][N];
template<int Maxn, int Maxm>
struct Dinic {
int Head[Maxn], Next[Maxm], to[Maxm], cap[Maxm], e;
void Init() {
Set(Head, 0); e = 1;
}
inline void add_edge(int u, int v, int flow) {
to[++ e] = v; Next[e] = Head[u]; cap[e] = flow; Head[u] = e;
}
inline void Add(int u, int v, int flow) {
add_edge(u, v, flow); add_edge(v, u, 0);
}
int S, T, dis[Maxn];
bool Bfs() {
queue<int> Q; Q.push(S); Set(dis, 0); dis[S] = 1;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = Head[u], v = to[i]; i; v = to[i = Next[i]])
if (cap[i] && !dis[v]) dis[v] = dis[u] + 1, Q.push(v);
}
return dis[T];
}
int cur[Maxn];
int Dfs(int u, int flow) {
if (!flow || u == T) return flow;
int res = 0, f;
for (int& i = cur[u], v = to[i]; i; v = to[i = Next[i]])
if (dis[v] == dis[u] + 1 && (f = Dfs(v, min(flow, cap[i])))) {
res += f; cap[i] -= f; cap[i ^ 1] += f;
if (!(flow -= f)) break ;
}
return res;
}
inline int Run() {
int res = 0;
while (Bfs())
Cpy(cur, Head), res += Dfs(S, inf);
return res;
}
};
Dinic<N * 2, N * N * 2> T;
bool Check(int lim) {
T.Init();
T.S = n + m + 1, T.T = n + m + 2;
For (i, 1, n) For (j, 1, m)
if (a[i][j] <= lim) T.Add(i, j + n, 1);
For (i, 1, n) T.Add(T.S, i, 1);
For (i, 1, m) T.Add(i + n, T.T, 1);
return T.Run() >= k;
}
int main () {
File();
n = read(); m = read(); k = n - read() + 1;
int l = inf, r = -inf;
For (i, 1, n) For (j, 1, m)
a[i][j] = read(), chkmin(l, a[i][j]), chkmax(r, a[i][j]);
int ans = 0;
while (l <= r) {
int mid = (l + r) >> 1;
if (Check(mid)) ans = mid, r = mid - 1;
else l = mid + 1;
}
printf ("%d\n", ans);
return 0;
}
「SCOI2015」国旗计划
题意
给你一个长为 \(M\) 的环,共有 \(N\) 个互不包含的环上区间 \([C_i, D_i]\) (当 \(C_i > D_i\) 的时候相当于 \([C_i, M]\) 和 \([1, D_i]\) 拼成的一个区间)。
每次强制选择第 \(i\) 个区间,询问至少还要选择多少个区间才能满足所有点都被覆盖。
$ N \leq 2 \times 10 ^ 5, M < 10 ^ 9, 1 \leq C_i, D_i \leq M $
题解
如果是序列上,那么就是很简单的一道倍增题了。
只需要处理一下每个点被跨过的区间 \([l_i, r_i]\) 的最大的 \(r_i\) 就行了,因为每次都向尽量走的远。
然后预处理第 \(i\) 号点走 \(2^j\) 步能到达的最远点 \(to_{i, j}\) 就行了。每次查询直接倍增就行了。
环上的麻烦一点,首先倍长拆环。然后你有可能你会绕环走了好几圈,这个你就多记下一个走了 \(2^j\) 步走了的距离 \(dis_{i, j}\) 就行了。(因为这样比较好写)
每次要走的距离分类讨论就行了。
然后最后的复杂度就是 \(O(N \log N)\) 的,轻松通过。
其实可以把这个倍增结构放到树上,每次就只需要查 \(dis\) 的差就行了(如果不在子树内要 \(+1\) ),复杂度可以优化成 \(O(N)\) 的。
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#define pb push_back
using namespace std;
typedef long long ll;
template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; }
inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
}
void File() {
#ifdef zjp_shadow
freopen ("2007.in", "r", stdin);
freopen ("2007.out", "w", stdout);
#endif
}
const int N = 4e5 + 1e3;
ll dis[N * 2][21];
int to[N * 2][21], l[N], r[N];
vector<int> V[N * 2];
int n, m, Hash[N * 2], len;
inline int Get_Id(int x) {
return lower_bound(Hash + 1, Hash + len + 1, x) - Hash;
}
int main () {
File();
n = read(); m = read();
For (i, 1, n) {
Hash[++ len] = l[i] = read();
Hash[++ len] = r[i] = read();
}
sort(Hash + 1, Hash + len + 1);
len = unique(Hash + 1, Hash + len + 1) - Hash - 1;
For (i, 1, n) {
l[i] = Get_Id(l[i]), r[i] = Get_Id(r[i]);
if (l[i] > r[i]) V[1].pb(r[i]), V[l[i]].pb(r[i] + len);
else V[l[i]].pb(r[i]);
}
int cur = 0;
For (i, 1, len) {
for (int v : V[i]) chkmax(cur, v);
dis[i][0] = dis[i + len][0] = cur - i;
to[i][0] = to[i + len][0] = cur;
}
int Lim = ceil(log2(len << 1));
For (j, 1, Lim) For (i, 1, len << 1) {
to[i][j] = to[to[i][j - 1]][j - 1];
dis[i][j] = dis[i][j - 1] + dis[to[i][j - 1]][j - 1];
}
For (i, 1, n) {
int ans = 0, u = r[i], need = l[i] <= r[i] ? len - (r[i] - l[i]) : l[i] - r[i];
Fordown (j, Lim, 0)
if (dis[u][j] < need)
need -= dis[u][j], u = to[u][j], ans |= 1 << j;
printf ("%d%c", ans + 2, i == iend ? '\n' : ' ');
}
return 0;
}
SCOI 2015 Day1 简要题解的更多相关文章
- SCOI 2015 Day2 简要题解
「SCOI2015」小凸玩密室 题意 小凸和小方相约玩密室逃脱,这个密室是一棵有 $ n $ 个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室.每个灯泡有个权值 $ A_i $,每条边 ...
- A · F · O —— JLOI2018翻车记(附Day1简要题解)
JLOI2018翻车记 并不知道该怎么写... 算了还是按照标准剧情来吧 这应该是一篇写得非常差的流水账... 2018.04.04 Day -1 省选前在机房的最后一天. 压力并不是很大,毕竟联赛 ...
- JLOI2015 DAY1 简要题解
「JLOI2015」有意义的字符串 题意 给你 \(b, d, n\) 求 \[ [(\frac{b + \sqrt d}2)^n] \mod 7528443412579576937 \] \(0 & ...
- SCOI2016 Day1 简要题解
目录 「SCOI2016」背单词 题意 题解 代码 「SCOI2016」幸运数字 题意 题解 总结 代码 「SCOI2016」萌萌哒 题意 题解 总结 代码 「SCOI2016」背单词 题意 这出题人 ...
- [NOIP 2018 Day1] 简要题解
[题目链接] 铺设道路 : https://www.luogu.org/problemnew/show/P5019 货币系统 : https://www.luogu.org/problemnew/sh ...
- AHOI2013 Round2 Day1 简要题解
第一题,好吧这是个dp.(搜素也能在BZOJ上卡过). 第二题,BFS搜索碰到的立方体面数,智硬没有想到... 第三题,其实一看就有思路,但关键是求x坐标不交的矩形对数+y坐标不交的矩形对数 - x, ...
- Noip 2014酱油记+简要题解
好吧,day2T1把d默认为1也是醉了,现在只能期待数据弱然后怒卡一等线吧QAQ Day0 第一次下午出发啊真是不错,才2小时左右就到了233,在车上把sao和fate补掉就到了= = 然后到宾馆之后 ...
- Tsinghua 2018 DSA PA2简要题解
反正没时间写,先把简要题解(嘴巴A题)都给他写了记录一下. upd:任务倒是完成了,我也自闭了. CST2018 2-1 Meteorites: 乘法版的石子合并,堆 + 高精度. 写起来有点烦貌似. ...
- Codeforces 863 简要题解
文章目录 A题 B题 C题 D题 E题 F题 G题 传送门 简要题解?因为最后一题太毒不想写了所以其实是部分题解... A题 传送门 题意简述:给你一个数,问你能不能通过加前导000使其成为一个回文数 ...
随机推荐
- Applese 的毒气炸弹 G 牛客寒假算法基础集训营4(图论+最小生成树)
链接:https://ac.nowcoder.com/acm/contest/330/G来源:牛客网 Applese 的毒气炸弹 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262 ...
- 分布式ID生成系统 UUID与雪花(snowflake)算法
Leaf——美团点评分布式ID生成系统 -https://tech.meituan.com/MT_Leaf.html 网游服务器中的GUID(唯一标识码)实现-基于snowflake算法-云栖社区-阿 ...
- CMD管道命令使用
Windows netstat 查看端口.进程占用 开始--运行--cmd 进入命令提示符 输入netstat -ano 即可看到所有连接的PID 之后在任务管理器中找到这个PID所对应的程序如果任务 ...
- 二、npm scripts
一.执行原理 安装npm 包,会将其package.json bin 字段添加到node_modules bin 里面,创建对应的.cmd文件,因此: 例如: "scripts": ...
- vue的定位
高德定位 https://blog.csdn.net/YY110621/article/details/87921605(copy) 话不多说,直接写方法步骤,需要的直接拿去放在自己项目中即可使用先看 ...
- Day 6-1计算机网络基础&TCP/IP
按照功能不同,人们将互联网协议分为osi七层或tcp/ip五层或tcp/ip四层(我们只需要掌握tcp/ip五层协议即可) 每层运行常见物理设备: TCP/IP协议: Transmission Con ...
- Python深入类和对象
一. 鸭子类型和多态 1.什么是鸭子类型: 在程序设计中,鸭子类型(英语:Duck typing)是动态类型和某些静态语言的一种对象推断风格."鸭子类型"像多态一样工作,但是没有继 ...
- mongodb3的使用
1.在windows下载安装mongodb 将下载好的zip压缩文件解压并重命名为mongo-3.0.6,并在根目录下新建文件夹data用于存放数据 2.启动mongod守护进程 使用命令mongod ...
- 实用的几个JS新特性(es 2016)
在Chrome 55下测试,可用. 1.箭头函数(arrow function) 以前写的匿名函数是这样的 function(){}, 现在可以简单写成这样()=>{} 如果直接return,没 ...
- WPF中如何调整TabControl的大小,使其跟随Window的大小而改变?
多年不写技术博客,手生的很,也不知道大家都关注什么,最近在研究Wpf及3d模型的展示,碰到很多问题,这个是最后一个问题,写出来小结一下...... WPF中如何调整TabControl的大小,使其跟随 ...