【BZOJ1831】[AHOI2008]逆序对(动态规划)

题面

BZOJ

洛谷

题解

显然填入的数拎出来是不降的。

那么就可以直接大力\(dp\)。

设\(f[i][j]\)表示当前填到了\(i\),上一个填的数是\(j\)的最小逆序对数。

随便拿什么维护一下转移就好了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 10010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,K,sum,a[MAX],ans=1e9,f[MAX][101],s1[101],s2[101];
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)if(~a[i])s2[a[i]]+=1;
for(int i=1;i<=K;++i)s2[i]+=s2[i-1];
for(int i=1;i<=K;++i)s1[i]=s2[i];
for(int i=1;i<=n;++i)
if(~a[i])
{
sum+=s1[a[i]-1];
for(int j=a[i];j<=K;++j)s1[j]-=1;
}
for(int i=1;i<=n;++i)
if(~a[i])
{
for(int j=1;j<=K;++j)f[i][j]=f[i-1][j];
for(int j=a[i];j<=K;++j)s2[j]-=1,s1[j]+=1;
}
else
{
for(int j=1;j<=K;++j)f[i][j]=f[i-1][j]+s2[j-1]+s1[K]-s1[j];
for(int j=1;j<K;++j)f[i][j+1]=min(f[i][j+1],f[i-1][j]+s2[j]+s1[K]-s1[j+1]);
for(int j=2;j<=K;++j)f[i][j]=min(f[i][j],f[i][j-1]);
}
for(int i=1;i<=K;++i)ans=min(ans,f[n][i]);
printf("%d\n",ans+sum);
return 0;
}

【BZOJ1831】[AHOI2008]逆序对(动态规划)的更多相关文章

  1. BZOJ1831: [AHOI2008]逆序对

    1831: [AHOI2008]逆序对 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 341  Solved: 226[Submit][Status] ...

  2. bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)

    1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...

  3. 【BZOJ】1831: [AHOI2008]逆序对

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...

  4. BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对

    这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #inclu ...

  5. 【[AHOI2008]逆序对】

    被锤爆了 被这个题搞得自闭了一上午,觉得自己没什么前途了 我又没有看出来这个题的一个非常重要的性质 我们填进去的数一定是单调不降的 首先如果填进去的数并不是单调不降的,那么填进去本身就会产生一些逆序对 ...

  6. [AHOI2008] 逆序对

    link 我们可以很容易的推断出$-1$是单调不降的,若$i>j$且$a_i$与$a_j$都没有填数,若填完之后$a_i>a_j$或者$a_i<a_j$,则对答案产生影响的只在$[i ...

  7. 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)

    题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...

  8. [AHOI2008]逆序对(dp)

    小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为 ...

  9. BZOJ 1831: [AHOI2008]逆序对

    题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...

随机推荐

  1. Windows之系统自带截屏快捷键

    Windows之系统自带截屏快捷键 现在我们都习惯了使用QQ截屏,但是有时候电脑没有网络,也就意味着无法登陆QQ,在这个时候再有截屏的需求时,我们就束手无策了. 截取全屏 现在我说以个Windows系 ...

  2. Python之操作redis数据库

    使用redis模块 一.操作redis 1.添加信息 (1)直接建key-value信息: 右键-Add New Key,手动添加key和value 右键-Console,打开控制台,写入命令 (2) ...

  3. Oracle undo 表空间不可用

    由于某次不小心操作,在切换表空间时没有成功,由于把undo的配置参数 undo_management值设置为MANUAL所以在启动数据库时没有报任何错误,但是给表插入数据时报错了,回滚段不可用的错误. ...

  4. 428.x的n次幂

    实现 pow(x,n) 不用担心精度,当答案和标准输出差绝对值小于1e-3时都算正确 样例 Pow(2.1, 3) = 9.261 Pow(0, 1) = 0 Pow(1, 0) = 1 挑战 O(l ...

  5. select into赋值方式

    declare v_price ,);--单价 v_usenum number;--水费字数 v_usenum2 number;--使用吨数 begin v_price:=2.45;--每吨单价 -- ...

  6. 剑指offer(12)

    来两道关于链表链接的题目: 题目一: 输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则. 本题要考虑到其中一条链表是空或者两个都是空的情况. 在每个链表安上一 ...

  7. iframe全屏显示

    <iframe webkitallowfullscreen="" mozallowfullscreen="" allowfullscreen=" ...

  8. 一个简单jpa例子

    package com.example.demo.entity; import javax.persistence.*; /*使用jpa注解配置映射关系*/ /*告诉jpa这是一个实体类和(数据表映射 ...

  9. 如何使用Action.Invoke()触发一个Storyboard

    一般在我们的项目中,最好是将Storyboard放在前台,然后设置Storyboard的x:key值,通过我们的TryFindResource来查找到当前的Storyboard来启动Stroyboar ...

  10. 初识GetMapping(""),使用方法

    GetMapping("value = /SF/{x_num}")与GetMapping("/SF/{x_num}")通过POSTMAN获得的值一样. 注意:G ...