题目大意

  有\(n\)种不同的邮票,皮皮想收集所有种类的邮票。唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是\(n\)种邮票中的哪一种是等概率的,概率均为\(\frac{1}{n}\)。但是由于凡凡也很喜欢邮票,所以皮皮购买第\(k\)张邮票(注意是第\(k\)张而不是第\(k\)种)需要支付\(k\)元钱。现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望。

  \(n\leq 10000\)

题外话

  如果买第\(k\)种需要\(k\)元钱要怎么做?

  已经买了\(i\)张,买到下一张需要的期望钱数是\(\frac{n}{n-i}\times\frac{n+1}{2}\)

  所以总的代价是

\[\sum_{i=0}^{n-1}\frac{n(n+1)}{2(n-i)}=\frac{n(n+1)}{2}\sum_{i=1}^{n}\frac{1}{i}
\]

  可惜这题没那么简单。

题解

  设\(p(x,i)\)为已经买了\(i\)个物品,通过\(x\)次购买买完剩下的物品的概率

  设\(g_i\)为已经买到了\(i\)个物品,买完所有物品的期望次数

\[g_i=g_{i+1}+\frac{n}{n-i}
\]

  下一次买到想要的物品的概率为\(\frac{n-i}{n}\),取倒数就是期望

  还有一条式子

\[g_i=\sum_{x=1}^\infty x\times p(x,i)
\]

  买\(x\)次成功的概率乘以\(x\)

  设\(f_{i,j}\)为已经买到了\(i\)个物品,之间买过\(j\)次,买完所有物品的花费

  有一个递推式

\[f_{i,j}=f_{i,j+1}\times\frac{i}{n}+f_{i+1,j+1}\times\frac{n-i}{n}+(j+1)
\]

\[\begin{align}
f_{i,j}&=\sum_{x=1}^\infty ((j+1)+(j+2)+\cdots(j+x))\times p(x,i)\\
&=\sum_{x=1}^\infty \frac{x(x+2j+1)}{2}\times p(x,i)
\end{align}
\]

  作差得

\[f_{i,j+1}-f_{i,j}=\sum_{x=1}^\infty x\times p(x,i)=g_i\\
f_{i,j+1}=f_{i,j}+g_i\\
\]

  代入到递推式中得

\[\begin{align}
f_{i,j}&=(f_{i,j}+g_i)\times\frac{i}{n}+(f_{i+1,j}+g_{i+1})\times\frac{n-i}{n}+(j+1)\\
f_{i,j}&=\frac{i}{n}f_{i,j}+\frac{i}{n}g_{i}+\frac{n-i}{n}f_{i+1,j}+\frac{n-i}{n}g_{i+1}+(j+1)\\
f_{i,j}&=\frac{i}{n-i}g_{i}+f_{i+1,j}+g_{i+1}+\frac{n}{n-i}(j+1)
\end{align}
\]

  可以发现\(f_{i,j}\)只和\(j\),\(f_{i+1,j}\),\(g_{i}\),\(g_{i+1}\)有关。因为我们只要求\(f_{0,0}\),所以可以把\(j\)那一维删去

\[f_{i}=\frac{i}{n-i}g_i+f_{i+1}+g_{i+1}+\frac{n}{n-i}
\]

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
double g[100010];
double f[100010];
int main()
{
int n;
scanf("%d",&n);
int i;
g[n]=0;
for(i=n-1;i>=0;i--)
g[i]=g[i+1]+double(n)/(n-i);
f[n]=0;
for(i=n-1;i>=0;i--)
f[i]=f[i+1]+double(i)/(n-i)*g[i]+g[i+1]+double(n)/(n-i);
printf("%.2lf\n",f[0]);
return 0;
}

【BZOJ1426】收集邮票 期望DP的更多相关文章

  1. 【BZOJ】1426: 收集邮票 期望DP

    [题意]有n种不同的邮票,第i次可以花i元等概率购买到一种邮票,求集齐n种邮票的期望代价.n<=10^4. [算法]期望DP [题解]首先设g[i]表示已拥有i张邮票集齐的期望购买次数,根据全期 ...

  2. 收集邮票 (概率dp)

    收集邮票 (概率dp) 题目描述 有 \(n\) 种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是 \(n\) 种邮票中的哪一种是等概率 ...

  3. 2018.08.31 bzoj1426 收集邮票(期望dp)

    描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所以 ...

  4. 【BZOJ1426】收集邮票 期望

    [BZOJ1426]收集邮票 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的, ...

  5. bzoj1426: 收集邮票(期望)

    推错半天式子T T 设f[i]为买了i种卡,期望再买几张有n种卡 设g[i]为买了i种卡,期望再花多少钱有n种卡 可以把当前买卡的价格看作1,则以后买的所有卡片要增加1元,于是要加上f[i]和f[i+ ...

  6. bzoj1426 (洛谷P4550) 收集邮票——期望

    题目:https://www.luogu.org/problemnew/show/P4550 推式子……:https://blog.csdn.net/pygbingshen/article/detai ...

  7. 【BZOJ1426】收集邮票 概率DP 论文题 推公式题

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  8. 嘴巴题7 BZOJ1426: 收集邮票

    Time Limit: 1 Sec Memory Limit: 162 MB Submit: 546 Solved: 455 [Submit][Status][Discuss] Description ...

  9. Bzoj1426 收集邮票

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 292  Solved: 232 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一 ...

随机推荐

  1. H5 14-后代选择器和子元素选择器

    14-后代选择器和子元素选择器 <!DOCTYPE html> <html lang="en"> <head> <meta charset ...

  2. 埋锅。。。BZOJ1004-置换群+burnside定理+

    看这道题时当时觉得懵逼...这玩意完全看不懂啊...什么burnside...难受... 于是去看了点视频和资料,大概懂了置换群和burnside定理,亦步亦趋的懂了别人的代码,然后慢慢的打了出来.. ...

  3. 1076E - Vasya and a Tree(图的遍历)

    题意:给出一棵根节点为1的树,执行m次修改操作,每次修改为a,b,c,表示a节点的子树中,距离a小于等于b的子节点的权值加上c,求m次操作后每个节点的权值 分析:用线段树维护每层节点的权值,然后dfs ...

  4. 动态规划-LIS最长上升子序列

    优化链接 [https://blog.csdn.net/George__Yu/article/details/75896330] #include<stdio.h> #include< ...

  5. Servlet 转发请求与重定向,以及路径问题

    转发请求 当一个servlet接收到请求后,如果需要将请求转发给另外一个servlet或者jsp文件,可使用下面这种方法: package cn.ganlixin.servlet; import ja ...

  6. 组建自己的局域网(可以将PC机实现为服务器)

    最近想要自己组建一个集群,并且可以通过外网访问,查了好些资料,终于成功了! 设备清单:笔记本1:(4g内存,500g硬盘),笔记本2:(12g内存,120g固态硬盘) (笔记本2上装有5台虚拟机,操作 ...

  7. 转《基于Ionic3实现微信支付和支付宝支付》

    在Ionic应用里实现支付并不难,但是有的坑真是不爬不知道. 一:支付宝支付 网上关于支付宝支付cordova插件真是非常多,但是大多会报一些让你很无语的错误.比如sdk早已过时不是最新的,或者没有出 ...

  8. Linux基础学习笔记4-文本处理

    本章内容 抽取文本的工具 文件内容:less和cat 文件截取:head和tail 按列抽取:cut 按关键字抽取:grep 文件查看 文件查看命令:cat,tac,rev cat [OPTION] ...

  9. python爬虫之scrapy文件下载

    我们在写普通脚本的时候,从一个网站拿到一个文件的下载url,然后下载,直接将数据写入文件或者保存下来,但是这个需要我们自己一点一点的写出来,而且反复利用率并不高,为了不重复造轮子,scrapy提供很流 ...

  10. 关于 flask 实现数据库迁移以后 如何根据创建的模型类添加新的表?

    在此之前 我们先说一下常规的flask运用第三方扩展来实现数据库的迁移的三个步骤以及每步的目的. 数据库的迁移的三个步骤:(cd 到run.py所在路径) python run.py db init ...