2D Pose estimation主要面临的困难:遮挡、复杂背景、光照、真实世界的复杂姿态、人的尺度不一、拍摄角度不固定等。

单人姿态估计

传统方法:基于Pictorial Structures, DPM

▪ 基于深度学习的算法包括直接回归坐标(Deep Pose)和通过热力图回归坐标(CPM, Hourlgass)

目前单人姿态估计,主流算法是基于Hourlgass各种更改结构的算法。

多人姿态估计

二维图像姿态估计基于CNN的多人姿态估计方法,通常有2个思路(Bottom-Up Approaches和Top-Down Approaches):

(1)Top-Down Approaches,即two-step framework,就是先进行行人检测,得到边界框,然后在每一个边界框中检测人体关键点,连接成一个人形,缺点就是受检测框的影响太大,漏检,误检,IOU大小等都会对结果有影响,算法包括RMPE、Mask-RCNN 等。

(2)Bottom-Up Approaches,即part-based framework,就是先对整个图片进行每个人体关键点部件的检测,再将检测到的部件拼接成一个人形,缺点就是会将不同人的不同部位按一个人进行拼接,代表方法就是openpose、DeepCut 、PAFs。

tricks

  • 采用多尺度,多分辨率的网络结构
  • 采用基于Residual Block来构建网络
  • 扩大感受野(large kernel, dilation convolution, Spatial Transformer Network、hourglass module)
  • 预处理很重要(将人放在输入图片的中心,人的尺度尽量归一化到统一尺度,对图片进行翻转、旋转)
  • 后处理同样重要

openpose源码中subset输出的关键点顺序是:1鼻子,2脖子,3右肩,4右肘,5右腕,6左肩,7左肘,8左腕,9右髋,10右膝,11右踝,12左髋,13左膝,14左踝,15左眼,16右眼,17左耳,18右耳,19 pt19

输出格式;https://www.aiuai.cn/aifarm712.html

CPM

paper:

https://blog.csdn.net/shenxiaolu1984/article/details/51094959

openPose

GitHub:

Realtime_Multi-Person_Pose_Estimation

https://github.com/CMU-Perceptual-Computing-Lab/openpose

配置:

https://blog.csdn.net/lgh0824/article/details/75949477

生成sln文件

https://blog.csdn.net/zb1165048017/article/details/82115724

https://blog.csdn.net/hk121/article/details/83537350

openPose解析

https://blog.csdn.net/qq_27158179/article/details/82717821

https://www.jianshu.com/c/8602d176d8ea?utm_source=desktop&utm_medium=notes-included-collection

https://zhuanlan.zhihu.com/p/48507352

[OpenPose翻译] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ∗原文翻译(注释版)

https://blog.csdn.net/kenllf/article/details/79702078

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ∗ 实时多人人体姿态估计论文原理讲解

https://blog.csdn.net/Lin_xiaoyi/article/details/78838393

https://blog.csdn.net/yxr403614258/article/details/77977330

Paper reading: Realtime Multi-person 2D Pose estimation using Part Affinity Fields(1)

https://blog.csdn.net/yengjie2200/article/details/68064095

openpose实验总结

https://blog.csdn.net/qq_20657717/article/details/81707746

肤色检测

https://blog.csdn.net/yangtrees/article/details/8269984

基于颜色检测物体

http://www.cnblogs.com/wangxinyu0628/p/5928824.html

项目编译:

https://blog.csdn.net/zb1165048017/article/details/82115724

姿态估计的应用:

https://blog.csdn.net/itchosen/article/details/77200384

https://blog.csdn.net/shenxiaolu1984/article/details/51094959

https://blog.csdn.net/yeahDeDiQiZhang/article/details/78131566

https://www.cnblogs.com/JillBlogs/p/9098989.html

Stacked Hourglass算法详解

https://blog.csdn.net/shenxiaolu1984/article/details/51428392

代码阅读】OpenPose(Pytorch Realtime Multi-Person Pose Estimation)

https://blog.csdn.net/a529975125/article/details/80991781

pytorch千千问

https://blog.csdn.net/daniaokuye/article/details/78851479

human pose estimation的更多相关文章

  1. (转)Awesome Human Pose Estimation

    Awesome Human Pose Estimation 2018-10-08 11:02:35 Copied from: https://github.com/cbsudux/awesome-hu ...

  2. 论文阅读理解 - Stacked Hourglass Networks for Human Pose Estimation

    http://blog.csdn.net/zziahgf/article/details/72732220 keywords 人体姿态估计 Human Pose Estimation 给定单张RGB图 ...

  3. 论文笔记 Stacked Hourglass Networks for Human Pose Estimation

     Stacked Hourglass Networks for Human Pose Estimation key words:人体姿态估计 Human Pose Estimation 给定单张RGB ...

  4. Deep High-Resolution Representation Learning for Human Pose Estimation

    Deep High-Resolution Representation Learning for Human Pose Estimation 2019-08-30 22:05:59 Paper: CV ...

  5. Learning Feature Pyramids for Human Pose Estimation(理解)

    0 - 背景 人体姿态识别是计算机视觉的基础的具有挑战性的任务,其中对于身体部位的尺度变化性是存在的一个显著挑战.虽然金字塔方法广泛应用于解决此类问题,但该方法还是没有很好的被探索,我们设计了一个Py ...

  6. DensePose: Dense Human Pose Estimation In The Wild(理解)

    0 - 背景 Facebook AI Research(FAIR)开源了一项将2D的RGB图像的所有人体像素实时映射到3D模型的技术(DensePose).支持户外和穿着宽松衣服的对象识别,支持多人同 ...

  7. 对DensePose: Dense Human Pose Estimation In The Wild的理解

    研究方法 通过完全卷积学习从图像像素到密集模板网格的映射.将此任务作为一个回归问题,并利用手动注释的面部标注来训练我们的网络.使用这样的标注,在三维对象模板和输入图像之间,建立密集的对应领域,然后作为 ...

  8. Pose Estimation

    Human Pose Estimation for Real-World Crowded Scenarios https://arxiv.org/pdf/1907.06922.pdf CrowdPos ...

  9. paper 154:姿态估计(Hand Pose Estimation)相关总结

    Awesome Works  !!!! Table of Contents Conference Papers 2017 ICCV 2017 CVPR 2017 Others 2016 ECCV 20 ...

随机推荐

  1. [React] immutable.js

    //Map() 原生object转Map对象 (只会转换第一层,注意和fromJS区别) immutable.Map({name:'danny', age:18}) //List() 原生array转 ...

  2. Linux--Introduction and Basic commands(Part one)

    Welcome to Linux world! Introduction and Basic commands--Part one J.C 2018.3.11 Chapter 1 What Is Li ...

  3. 一个Android常用的组件收集

    Android笔记之ViewPager实例一:制作欢迎引导界面:http://www.cnblogs.com/xingyyy/p/3335705.html Fragment 实现底部菜单栏:http: ...

  4. C-fopen,fwrite,fread,fseek,fgets,popen,access笔记

    FILE * fopen(const char * path,const char * mode); 所需库: <stdio.h> 返回值 FILE是C语言定义的标准数据结构,如果open ...

  5. 【Java每日一题】20170227

    20170224问题解析请点击今日问题下方的“[Java每日一题]20170227”查看(问题解析在公众号首发,公众号ID:weknow619) package Feb2017; import jav ...

  6. Java学习笔记之——多态、抽象

    1. 多态 多态:同一种事物调用同一个方法有不同的表现行为.(同一类型操作,作用于某一类对象,可以有不同的解释,产生不同的执行结果) 应用场景;当你定义一个功能性的方法可以使用多态的概念 前提:子类继 ...

  7. Hibernate入门(一)

    1.导包 导入Hibernate最基本的包(不要忘记导入数据库驱动包了!) 下载文件名为黄色框框中的名称的压缩包在对应路径下,有个required包下的所有包就是必备的基本包 2.建表 USE TES ...

  8. adb命令笔记

    adb devices [-l]: 列出所有连接设备 l: 列出设备限定符 adb connect <host>[:<port>]: 通过ip连接到设备 host: IP po ...

  9. 三问助你Fundebug

    译者按: Debug也要三省吾身! 原文: Three Questions About Each Bug You Find 译者: Fundebug 为了保证可读性,本文采用意译而非直译.另外,本文版 ...

  10. Spider-five

    一.Scrapy框架 1. Scrapy框架主要组成 a. Scrapy三个对象: request请求对象.response响应对象.item数据对象(字典) b. Scrapy五个核心组件: Spi ...