F - Tmutarakan Exams

题意 : 从 < = S 的 数 中 选 出 K 个 不 同 的 数 并 且 gcd > 1 。求方案数。
 
思路 :记 录 一 下 每 个 数 的 倍 数 vector 存 储 ,最后从 2 开始 遍历 一遍每个数 ,从 他的倍数中 挑选 k个 组合数求解。
 
但是会有重复,因为 比如 K=2,S=15时 , 2倍数 : 2  ,4 , 6,  8, 10,  12, 14 ,   挑出了 这种情况 6 ,12,然后
 
从3的倍数 : 3, 6 ,9,12 ,15, 也选出了 6, 12 这种情况。所以产生重复计数 ,去重,通过他们的最小公倍数 6
 
6的倍数 : 6, 12, 去掉 即可。 恰好符合莫比乌斯函数的相反数 作为系数。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 1234
vector<ll>p[55];
bool vis[maxn+10];
int prime[maxn+10],mu[maxn+10];
ll s,k,c[33][33],ans,len;
void init()
{
for(int i=0; i<=30; i++)c[i][0]=1;
for(int i=1; i<=30; i++)
for(int j=1; j<=i; j++)
c[i][j]=c[i-1][j-1]+c[i-1][j];
}
void getphi()
{
int cnt=0;
mu[1]=1;
for(int i=2; i<maxn; i++)
{
if(!vis[i])
{
prime[++cnt]=i;
mu[i]=-1;
}
for(int j=1; j<=cnt&&i*prime[j]<maxn; j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
else mu[i*prime[j]]=-mu[i];
}
}
}
int main()
{
init();
getphi();
scanf("%lld%lld",&k,&s);
for(int i=2; i<=s; i++)
for(int j=2; j<=i; j++)
if(i%j==0)p[j].push_back(i);
for(int i=2; i<=s; i++)
{
len=p[i].size();
if(len<k)continue;
ans+=(-mu[i]*c[len][k]);
}
if(ans>10000)printf("10000\n");
else printf("%lld\n",ans);
return 0;
}

  直接进行计数  dp[ i ] [ j ] [ k ] 前 i 个 数 选 了 j 个 数, gcd 为 k 的 方 案 数.

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 65
ll dp[maxn][maxn][maxn],ans;
int k,s;
int main()
{
scanf("%d%d",&k,&s);
for(int i=0; i<=s; i++)dp[i][1][i]=1;
for(int i=1; i<s; i++)
for(int j=1; j<=min(k,i); j++)
for(int z=1; z<=s; z++)
{
dp[i+1][j][z]+=dp[i][j][z];
dp[i+1][j+1][__gcd(i+1,z)]+=dp[i][j][z];
}
for(int i=2; i<=s; i++)
ans+=dp[s][k][i];
if(ans>10000)printf("10000\n");
else printf("%lld\n",ans);
return 0;
}

  

F - Tmutarakan Exams URAL - 1091 -莫比乌斯函数-容斥 or DP计数的更多相关文章

  1. HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

    题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...

  2. Tmutarakan Exams URAL - 1091(莫比乌斯函数 || 容斥)

    题意: 求1 - s 中 找出k个数 使它们的gcd  > 1 求这样的k个数的对数 解析: 从每个素数的倍数中取k个数  求方案数 然后素数组合,容斥一下重的 奇加偶减 莫比乌斯函数的直接套模 ...

  3. BZOJ 2440 莫比乌斯函数+容斥+二分

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5473  Solved: 2679[Submit][Sta ...

  4. Relatively Prime Powers CodeForces - 1036F (莫比乌斯函数容斥)

    Relatively Prime Powers CodeForces - 1036F Consider some positive integer xx. Its prime factorizatio ...

  5. 完全平方数 HYSBZ - 2440 (莫比乌斯函数容斥)

    完全平方数 HYSBZ - 2440 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他 ...

  6. C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥

    C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...

  7. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. BZOJ 2301 Problem b (莫比乌斯反演+容斥)

    这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...

  9. bzoj2440 完全平方数 莫比乌斯值+容斥+二分

    莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...

随机推荐

  1. NIO(三)

    使用直接缓冲区完成文件的复制(内存映射文件) package com.cppdy.nio; import java.nio.MappedByteBuffer; import java.nio.chan ...

  2. 《剑指offer》用两个栈实现队列

    本题来自<剑指offer> 用两个栈实现队列 题目: 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 思路: 队列定义:先进先出 栈定义:先进后出 要 ...

  3. CF1121C 模拟

    恶心场恶心题,,round千万不能用库函数的.. /*枚举时间轴t,r是当前完成比例, 记录每个测试的开始时间si,如果有t-si等于r,那么这个测试就标记一下 优先队列存储每个测试,按照si+ai的 ...

  4. python Com接口测试

    import comtypes.client as cc import comtypes tlb_id = comtypes.GUID("{D85C6069-D628-4276-93C3-9 ...

  5. UI开发总结

    1. bootstrap tooltip 修改内容 <i class="ace-icon fa fa-user" id="test-tooltip" ti ...

  6. DevOps 在公司项目中的实践落地

    原文出处:https://www.cnblogs.com/beef/p/7743594.html ref: [DevOps]团队敏捷开发系列--开山篇 https://www.cnblogs.com/ ...

  7. 隐藏WIN10资源管理器中的3D对象文件夹

    1.WIN+R,打开运行窗口,输入“regdeit”启动注册表编辑器 2.定位到 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersio ...

  8. ubuntu下的“用vim打开中文乱码,用cat打开正常显示”的解决方法

    转载 系统环境:ubuntu10.04 vim gvim完全安装 问题:终端下vim中的汉字为乱码,网上搜索了一些解决方案.但是奇怪的是,这些方法都不能实现gvim的菜单和文中汉字,终端vim下的文中 ...

  9. echarts 模拟迁徙

    echarts 3 的功能貌似加了不少额 官方demo:http://echarts.baidu.com/demo.html#geo-lines 地图是基于地理地图的 百度提供了一些地图:http:/ ...

  10. [转] Mongoose初使用总结

    连接mongoose mongoose连接数据库有两种方式 第一种: 'use strict'; const mongoose = require('mongoose'); mongoose.conn ...