import numpy as np
import pandas as pd

数据加载

首先,我们需要将收集的数据加载到内存中,才能进行进一步的操作。pandas提供了非常多的读取数据的函数,分别应用在各种数据源环境中,我们常用的函数为:

  • read_csv
  • read_table
  • read_sql

    q

1.1 加载csv数据

  • header 表标题,可以使用整形和或者整形列表来指定标题在哪一行,None是无标题,默认infer首行
  • sep 控制数据之间的分隔符号。read_csv方法,默认为逗号(,)
  • names 设置列标签(相当于df.columns)
  • index_col 可以指定有唯一标记的列来充当行标签
  • usecols 指定感兴趣的列
# 加载数据集, 返回DataFram类型
df = pd.read_csv('/home/geoffrey/文档/33.csv', header=0, sep=',', usecols=['v:0', 'Points:0', 'Points:1', 'Points:2'])
df.head(10)

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
v:0 Points:0 Points:1 Points:2
0 2.57150 1.23150 -0.86263 -0.40724
1 2.08420 1.15670 -0.90047 -0.34635
2 1.27970 0.76719 -0.93330 -0.26176
3 0.71951 0.63454 -0.91585 -0.22918
4 1.63080 0.81560 -0.93992 -0.20332
5 3.36400 1.50590 -0.98745 -0.19570
6 2.27160 0.82635 -0.89883 -0.19312
7 2.64630 0.96451 -0.85991 -0.18457
8 0.91226 0.68853 -0.83424 -0.18203
9 4.55390 1.46730 -0.82822 -0.17043

1.2 加载数据库数据

pd.read_sql(sql语句, 连接对象)

import sqlite3

# 创建连接,创建数据库
con = sqlite3.connect('test.db')
# SQL语句
sql = 'create table person(id int primary key, name varchar(100))'
con.execute(sql) # 插入数据
sql = 'insert into person(name) values("Geoffrey")'
con.execute(sql)
con.commit() # 查看数据
sql = 'select * from person'
pd.read_sql(sql, con)

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
id name
0 None Geoffrey

1.3 数据流处理

数据流.getvalue() # 注意,写入后指针在数据流的末尾,需要调整指针

from io import StringIO # 类文件对象(缓存区)

# 创建缓存区
sio = StringIO() # 向缓存区写入数据
df.to_csv(sio) # 读取数据
sio.getvalue()
',0,1,2\n0,1,2,3.0\n1,4,5,6.0\n2,7,8,\n'
# 调整指针到缓存区头部
sio.seek(0)
sio.read()
',0,1,2\n0,1,2,3.0\n1,4,5,6.0\n2,7,8,\n'

2. 写入数据

DataFrame与Series对象的to_csv方法:

该方法可以将数据写入:

  • 文件中
  • 数据流中
常用参数
  • sep 指定分隔符
  • header 是否写入标题行
  • na_rep 空值的表示
  • index 是否写入索引
  • index_label 索引字段的名称
  • columns 写入的字段
df = pd.DataFrame([
[1, 2, 3],
[4, 5, 6],
[7, 8, np.nan] # 含有
])
df

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
0 1 2
0 1 2 3.0
1 4 5 6.0
2 7 8 NaN
df.to_csv('test.csv', sep=',', header=True, index=True, na_rep='空', columns=[0, 2])
pd.read_csv('test.csv')

.dataframe thead tr:only-child th {
text-align: right;
}

.dataframe thead th {
text-align: left;
} .dataframe tbody tr th {
vertical-align: top;
}
Unnamed: 0 0 2
0 0 1 3.0
1 1 4 6.0
2 2 7

Pandas学习1 --- 数据载入的更多相关文章

  1. pandas学习(数据分组与分组运算、离散化处理、数据合并)

    pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...

  2. pandas学习(创建多层索引、数据重塑与轴向旋转)

    pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或 ...

  3. pandas学习(常用数学统计方法总结、读取或保存数据、缺省值和异常值处理)

    pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 de ...

  4. pandas学习(创建数据,基本操作)

    pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维ar ...

  5. pandas学习(四)--数据的归一化

    欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据 ...

  6. Pandas学习(一)——数据的导入

    欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学 ...

  7. 【转】Pandas学习笔记(二)选择数据

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  8. 吴裕雄--天生自然python学习笔记:pandas模块导入数据

    有时候,手工生成 Pandas 的 DataFrame 数据是件非常麻烦的事情,所以我们通 常会先把数据保存在 Excel 或数据库中,然后再把数据导入 Pandas . 另 一种情况是抓 取网页中成 ...

  9. 用scikit-learn和pandas学习线性回归

    对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习 ...

随机推荐

  1. 为 Confluence 6 分发包设置一个邮件会话

    最简单设置 Confluence 电子邮件发服务器的方否认就是通过 Confluence 的管理员控制台进行设置.请参考 Configuring a Server for Outgoing Mail ...

  2. 电子书转换为PDF格式

    目录 一.mobi 转换 pdf 步骤 二.查看转换后的结果目录 三.将PDF还原文件名且移出至新目录 背景:当我们从网上下载一些电子小说或书籍的时候,一般文件的格式可能是.epub..mobi等.这 ...

  3. ajax补充--------FormData等...

    一.回顾上节知识点 1.什么是json字符串? 轻量级的数据交换格式 2.定时器:关于setTimeout setTimeout(foo,3000)  # 3000表示3秒,foo表示一个函数,3秒后 ...

  4. BrupSuite渗透测试笔记(九)

    一. Update BurpSuite 1.选择help ,点击check for updates 记可以进入最新版本的下载界面,profession version need pay for mon ...

  5. bzoj1912 树形dp求直径(新写法),求直径的两端点

    通过回溯法可以求出直径的两个端点,同时注意有负权边的树求直径不可以用两次dfs来求,而必须用dp做 /* 分情况讨论问题 一条边也不加的情况,显然每条边要扫描两次, 该情况的答案是2(n-1) 只加一 ...

  6. ajax----发送异步请求的步骤

    1)获取(创建)Ajax对象:获取XMLHttpRequest对象2)创建请求:调用xhr的open方法3)在发送请求之前需要设置回调函数:绑定指定xhr的onreadystatechange事件4) ...

  7. spring cloud Hystix熔断机制--基本熔断配置和Fegin client熔断配置

    所谓的熔断机制和日常生活中见到电路保险丝是非常相似的,当出现了问题之后,保险丝会自动烧断,以保护我们的电器, 那么如果换到了程序之中呢? 当现在服务的提供方出现了问题之后整个的程序将出现错误的信息显示 ...

  8. oa项目环境搭建的操作步骤详解

    dto:多表关联查询用单独建一个类,把查询数据放dto即可 vo:是view的缩写.单独定义一个类

  9. POJ 1002 487-3279(字典树/map映射)

    487-3279 Time Limit: 2000MS        Memory Limit: 65536K Total Submissions: 309257        Accepted: 5 ...

  10. 四.idea本地调试hadoop程序

    目录: 目录见文章1 1.先上案例代码 WordCount.java: import java.io.IOException; import java.util.StringTokenizer; im ...