LOJ2721 [NOI2018] 屠龙勇士 【扩展中国剩余定理】
好久没写了,写一篇凑个数。
题目分析:
这题不难想,讲一下中国剩余定理怎么扩展。
考虑$$\left\{\begin{matrix}x \equiv a\pmod{b}\\ x \equiv c\pmod{d}\end{matrix}\right.$$
不难发现需要满足$gcd(b,d)|(c-a)$才有解。
结合后的模数一定是$lcm(b,d)$。然后扩展gcd合并就行了。
中间过程会超过$10^18$,需要快速乘。
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = ; int n,m;
long long a[maxn],p[maxn],LP[maxn],d[maxn]; multiset<long long,greater<long long> > s; long long cut[maxn],minn;
long long st[maxn],f[maxn]; void init(){
s.clear();memset(st,,sizeof(st)); memset(f,,sizeof(f));
for(int i=;i<=m;i++) s.insert(d[i]);
for(int i=;i<=n;i++){
set<long long>::iterator it = s.lower_bound(a[i]);
if(it == s.end())it--; cut[i] = (*it);
s.erase(it); s.insert(LP[i]);
}
minn = ;
for(int i=;i<=n;i++) minn = max(minn,(long long)ceil((double)a[i]/cut[i]));
} long long exgcd(long long alpha,long long beta,long long &x,long long &y){
if(beta == ){x = ; y = ; return alpha;}
else{
long long res = exgcd(beta,alpha%beta,y,x);
y-=x*(alpha/beta);
return res;
}
} void read(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%lld",&a[i]);
for(int i=;i<=n;i++) scanf("%lld",&p[i]);
for(int i=;i<=n;i++) scanf("%lld",&LP[i]);
for(int i=;i<=m;i++) scanf("%lld",&d[i]);
} long long multi(long long alpha,long long beta,long long mod){
long long dt,bit = ,ans = ;
alpha %= mod; beta %= mod;
alpha += mod; beta += mod;
alpha %= mod; beta %= mod;
dt = alpha;
while(bit <= beta){
if(bit & beta){ans += dt; if(ans >= mod) ans -= mod;}
bit<<=;dt = (dt+dt); if(dt >= mod) dt -= mod;
}
return ans;
} int cntt = ;
void work(){
for(int i=;i<=n;i++){
long long hd = exgcd(cut[i],p[i],st[i],f[i]);
if(a[i] % hd != ){puts("-1");return;}
f[i] = p[i]/hd; st[i] %= f[i]; if(st[i] < ) st[i] += f[i];
st[i] = multi(st[i],a[i]/hd,f[i]); st[i] %= f[i];
}
for(int i=;i<=n;i++){
long long im = exgcd(f[i],f[i-],f[],f[]);
if((st[i]-st[i-])%im){
puts("-1");return;
}
long long um = f[i]/im*f[i-];
long long tf=; exgcd(f[i-],f[i],tf,f[]);
tf =multi(tf,(st[i]-st[i-])/im,um);
tf += (-tf/f[i])*f[i]; tf += f[i];
tf = (st[i-]+multi(tf,f[i-],um))%um;
if(tf < ) tf += um;
f[i] = um; st[i] = tf;
}
if(st[n] < minn){
st[n] += (minn-st[n])/f[n]*f[n];
}
printf("%lld\n",st[n]);
//fast multi
} int main(){
int Tmp; scanf("%d",&Tmp);
while(Tmp--){
cntt++;
read();
init();
work();
}
return ;
}
LOJ2721 [NOI2018] 屠龙勇士 【扩展中国剩余定理】的更多相关文章
- LOJ.2721.[NOI2018]屠龙勇士(扩展CRT 扩展欧几里得)
题目链接 LOJ 洛谷 rank前3无压力(话说rank1特判打表有意思么) \(x*atk[i] - y*p[i] = hp[i]\) 对于每条龙可以求一个满足条件的\(x_0\),然后得到其通解\ ...
- 洛谷P4774 BZOJ5418 LOJ2721 [NOI2018]屠龙勇士(扩展中国剩余定理)
题目链接: 洛谷 BZOJ LOJ 题目大意:这么长的题面,就饶了我吧emmm 这题第一眼看上去没法列出同余方程组.为什么?好像不知道用哪把剑杀哪条龙…… 仔细一看,要按顺序杀龙,所以获得的剑出现的顺 ...
- 扩展中国剩余定理学习笔记+模板(洛谷P4777)
题目链接: 洛谷 题目大意:求同余方程组 $x\equiv b_i(mod\ a_i)$ 的最小正整数解. $1\leq n\leq 10^5,1\leq a_i\leq 10^{12},0\leq ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
- BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set
题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一 ...
- [洛谷P4774] [NOI2018]屠龙勇士
洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...
随机推荐
- windows开机启动bat文件
1.运行 shell:startup 命令,如下: 2.创建bat的快捷方式,把改快捷方式添加到,C:\ProgramData\Microsoft\Windows\Start Menu\Program ...
- 小P的字符串
题目描述 小P最近在研究字符编码,给出一串由0.1组成的字符串,从中任意进行截取,如果截取的字符串对应一个英文字母的ASCII值,小P就把这个0.1串叫字母子串,问给定的字符串最多能截取出多少个字母子 ...
- from bs4 import BeautifulSoup 报错
一: BeautifulSoup的安装: 下载地址:https://www.crummy.com/software/BeautifulSoup/bs4/download/4.6/ 下载后,解压缩,然后 ...
- Integer的NPE问题
- dynamo与cassandra区别
虽说cassandra是dynamo的开源版本,但两者还是有很大区别的. coordinator的选取: 在dynamo论文中,一般是preference list中N个副本的第一个 为什么叫“一般” ...
- scrapy之管道
scrapy之管道 通过管道将数据持久化到数据库中,企业中常见的数据库是MySQL,分布式爬取数据时只能讲数据存储到Redis装,还可以将数据存储到本地磁盘(即写入到本地文件中). 未完待续... 0
- 监控系统对比 Ganglia vs Open-falcon vs Prometheus vs Zabbix vs Nagios vs PandoraFMS
Zabbix vs Nagios vs PandoraFMS: an in depth comparison - Pandora FMS - The Monitoring Bloghttps://bl ...
- Python技术之书籍汇总
近日,一直在学习Python,发现有关的书籍还是很多值得一读的,所以在此总结一下.以后慢慢去研读吧!!! Python入门 <Python编程快速上手——让繁琐工作自动化> 作者: [美] ...
- SQL Server中JOIN的使用方法总结
JOIN 分为:内连接(INNER JOIN).外连接(OUTER JOIN).其中,外连接分为:左外连接(LEFT OUTER JOIN).右外连接(RIGHT OUTER JOIN).全外连接(F ...
- PhpStorm 头部注释、类注释和函数注释的设置
*设置位置:"Settings"->"file templates"; 如下图,设置头部注释.类注释以及函数注释,时间.用户名.文件名称等随机改变的属性, ...