Given an array of integers A, consider all non-empty subsequences of A.

For any sequence S, let the width of S be the difference between the maximum and minimum element of S.

Return the sum of the widths of all subsequences of A.

As the answer may be very large, return the answer modulo 10^9 + 7.

Example 1:

Input: [2,1,3]
Output: 6
Explanation:
Subsequences are [1], [2], [3], [2,1], [2,3], [1,3], [2,1,3].
The corresponding widths are 0, 0, 0, 1, 1, 2, 2.
The sum of these widths is 6.

Note:

  • 1 <= A.length <= 20000
  • 1 <= A[i] <= 20000

Idea 1.  刚开始想subset穷举, sort the array and get all the pair (0<= i < j <= n-1, A[i] < A[j]) such that (A[j] - A[i]) * 2^(j-i-1), saw an amazing online soloution, consider the contribution for each element, assume sequence is like A[0]...A[i-1]A[i]A[i+1]...A[n-1], on the left, there are i numbers < A[i], 2^(i) subsequence where A[i] is the maximu, on the right, there are n-1-i numbers > A[i], 2^(n-1-i) subsequence A[i] as minimum, hence we have

res = A[i]*2^(i) - A[i]*2^(n-1-i)

another trick to save compute 2^(n-1-i) and 2^(i) separately, sum(A[n-1-i]*2^(n-1-i)) = sum(A[n-1-i]*2^(i))

1 << i

(c=1 << 1) incrementely

Time complexity: O(nlogn)

Space complexity: O(1)

 class Solution {
public int sumSubseqWidths(int[] A) {
long res = 0;
long mod = (long)1e9+7;
long c = 1;
int n = A.length; Arrays.sort(A); for(int i = 0; i < A.length; ++i, c = (c << 1)%mod) {
res = (res + (A[i] - A[n - 1 - i]) * c + mod)%mod;
} return (int)(res);
}
}

Sum of Subsequence Widths LT891的更多相关文章

  1. [Swift]LeetCode891. 子序列宽度之和 | Sum of Subsequence Widths

    Given an array of integers A, consider all non-empty subsequences of A. For any sequence S, let the  ...

  2. 891. Sum of Subsequence Widths

    Given an array of integers A, consider all non-empty subsequences of A. For any sequence S, let the  ...

  3. [LeetCode] 891. Sum of Subsequence Widths 子序列宽度之和

    Given an array of integers A, consider all non-empty subsequences of A. For any sequence S, let the  ...

  4. 【leetcode】891. Sum of Subsequence Widths

    题目如下: 解题思路:题目定义的子序列宽度是最大值和最小值的差,因此可以忽略中间值.首先对数组排序,对于数组中任意一个元素,都可以成为子序列中的最大值和最小值而存在.例如数组[1,2,3,4,5,6] ...

  5. 子序列宽度求和 Sum of Subsequence Widths

    2019-10-14 17:00:10 问题描述: 问题求解: 如果暴力求解,时间复杂度是exponational的,因为这里是子序列而不是子数组.显然,直接枚举子序列是不太现实的了,那么可以怎么做呢 ...

  6. Unique Letter String LT828

    A character is unique in string S if it occurs exactly once in it. For example, in string S = " ...

  7. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  8. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

  9. leetcode hard

    # Title Solution Acceptance Difficulty Frequency     4 Median of Two Sorted Arrays       27.2% Hard ...

随机推荐

  1. LeetCode 92. Reverse Linked List II倒置链表2 C++

    Reverse a linked list from position m to n. Do it in one-pass. Note: 1 ≤ m ≤ n ≤ length of list. Exa ...

  2. WEB日志分析工具(Webslizer和AWstats)

    https://www.cnblogs.com/xiaowenshu/p/10030139.html#top

  3. Mac 系统下创建可双击执行文件,cd到执行文件当前目录

    在mac下之前我一直用.sh文件,但是要去终端里才能执行,后来得知可以写.command文件,双击及可执行,很方便,特此记录 #!/bin/bash basepath=$(cd `dirname $0 ...

  4. C# 异步机制

    Delegate.Invoke Delegate.Invoke is used to execute a delegate on the current thread. A delegate is j ...

  5. Spring Boot与Docker部署

    开启Docker远程访问 首先需要开启docker远程访问功能,以便可以进行远程操作. CentOS 6 修改/etc/default/docker文件,重启后生效(service docker re ...

  6. 安装oracle [INS-32025] 所选安装与指定 Oracle 主目录中已安装的软件冲突” 的问题

    删除C:\Program Files (x86)\Oracle\Inventory\下的Oracle文件夹即可解决问题

  7. SUSE11sp3 perf工具安装过程

    工作环境是suse11sp3系统(内核版本3.0.101-0.47.90-default),需要通过perf排查系统性能问题,但是默认是没有perf工具的. 在网上搜索了一下,需要linux-tool ...

  8. Educational Codeforces Round 30 D. Merge Sort

    题意:给你n和k,n代表有多少个数,k代表几次操作,求一个1到n的序列,要k次mergesort操作才能还原 Examples Input 3 3 Output 2 1 3 Input 4 1 Out ...

  9. EOSIO/appbase

    [EOSIO/appbase] AppBase是EOSIO开源一个plugins架构程序框架,被应用于 EOS nodeos中.AppBase manages the plugin life-cycl ...

  10. ACM学习之路

     2018-10-18 11:03:00 今天开始踏上实现梦想的道路,希望自己不要懈怠. 坚持做简单的事,坚持下来就会变得不简单.