1:MapReduce的概述:

  (1):MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.
  (2):MapReduce由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算,非常简单。
  (3):这两个函数的形参是key、value对,表示函数的输入信息。

2:MapReduce执行步骤:

  (1): map任务处理

    (a):读取输入文件内容,解析成key、value对。对输入文件的每一行,解析成key、value对。每一个键值对调用一次map函数。
    (b):写自己的逻辑,对输入的key、value处理,转换成新的key、value输出。
  (2)reduce任务处理

    (a)在reduce之前,有一个shuffle的过程对多个map任务的输出进行合并、排序。
    (b)写reduce函数自己的逻辑,对输入的key、value处理,转换成新的key、value输出。
    (c)把reduce的输出保存到文件中。
       例子:实现WordCountApp
3:map、reduce键值对格式:

4:MapReduce流程:
  (1)代码编写
  (2)作业配置
  (3)提交作业
  (4)初始化作业
  (5)分配任务
  (6)执行任务
  (7)更新任务和状态
  (8)完成作业


5:MapReduce介绍及wordcount和wordcount的编写和提交集群运行的案例:

WcMap类进行单词的局部处理:

 package com.mapreduce;

 import java.io.IOException;

 import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; /***
*
* @author Administrator
* 1:4个泛型中,前两个是指定mapper输入数据的类型,KEYIN是输入的key的类型,VALUEIN是输入的value的值
* KEYOUT是输入的key的类型,VALUEOUT是输入的value的值
* 2:map和reduce的数据输入和输出都是以key-value的形式封装的。
* 3:默认情况下,框架传递给我们的mapper的输入数据中,key是要处理的文本中一行的起始偏移量,这一行的内容作为value
* 4:key-value数据是在网络中进行传递,节点和节点之间互相传递,在网络之间传输就需要序列化,但是jdk自己的序列化很冗余
* 所以使用hadoop自己封装的数据类型,而不要使用jdk自己封装的数据类型;
* Long--->LongWritable
* String--->Text
*/
public class WcMap extends Mapper<LongWritable, Text, Text, LongWritable>{ //重写map这个方法
//mapreduce框架每读一行数据就调用一次该方法
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
//具体业务逻辑就写在这个方法体中,而且我们业务要处理的数据已经被框架传递进来,在方法的参数中key-value
//key是这一行数据的起始偏移量,value是这一行的文本内容 //1:切分单词,首先拿到单词value的值,转化为String类型的
String str = value.toString();
//2:切分单词,空格隔开,返回切分开的单词
String[] words = StringUtils.split(str," ");
//3:遍历这个单词数组,输出为key-value的格式,将单词发送给reduce
for(String word : words){
//输出的key是Text类型的,value是LongWritable类型的
context.write(new Text(word), new LongWritable());
} }
}

WcReduce进行单词的计数处理:

 package com.mapreduce;

 import java.io.IOException;

 import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; /***
*
* @author Administrator
* 1:reduce的四个参数,第一个key-value是map的输出作为reduce的输入,第二个key-value是输出单词和次数,所以
* 是Text,LongWritable的格式;
*/
public class WcReduce extends Reducer<Text, LongWritable, Text, LongWritable>{ //继承Reducer之后重写reduce方法
//第一个参数是key,第二个参数是集合。
//框架在map处理完成之后,将所有key-value对缓存起来,进行分组,然后传递一个组<key,valus{}>,调用一次reduce方法
//<hello,{1,1,1,1,1,1.....}>
@Override
protected void reduce(Text key, Iterable<LongWritable> values,Context context)
throws IOException, InterruptedException {
//将values进行累加操作,进行计数
long count = ;
//遍历value的list,进行累加求和
for(LongWritable value : values){ count += value.get();
} //输出这一个单词的统计结果
//输出放到hdfs的某一个目录上面,输入也是在hdfs的某一个目录
context.write(key, new LongWritable(count));
} }

WcRunner用来描述一个特定的作业

 package com.mapreduce;

 import java.io.IOException;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /***
* 1:用来描述一个特定的作业
* 比如,该作业使用哪个类作为逻辑处理中的map,那个作为reduce
* 2:还可以指定该作业要处理的数据所在的路径
* 还可以指定改作业输出的结果放到哪个路径
* @author Administrator
*
*/
public class WcRunner { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//创建配置文件
Configuration conf = new Configuration();
//获取一个作业
Job job = Job.getInstance(conf); //设置整个job所用的那些类在哪个jar包
job.setJarByClass(WcRunner.class); //本job使用的mapper和reducer的类
job.setMapperClass(WcMap.class);
job.setReducerClass(WcReduce.class); //指定reduce的输出数据key-value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class); //指定mapper的输出数据key-value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class); //指定要处理的输入数据存放路径
FileInputFormat.setInputPaths(job, new Path("hdfs://master:9000/wc/srcdata")); //指定处理结果的输出数据存放路径
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/wc/output")); //将job提交给集群运行
job.waitForCompletion(true);
} }

书写好上面的三个类以后打成jar包上传到虚拟机上面进行运行:

然后启动你的hadoop集群:start-dfs.sh和start-yarn.sh启动集群;然后将jar分发到节点上面进行运行;

之前先造一些数据,如下所示:

内容自己随便搞吧:

然后上传到hadoop集群上面,首选创建目录,存放测试数据,将数据上传到创建的目录即可;但是输出目录不需要手动创建,会自动创建,自己创建会报错:

然后将jar分发到节点上面进行运行;命令格式如hadoop    jar   自己的jar包   主类的路径

正常性运行完过后可以查看一下运行的效果:

6:MapReduce的本地模式运行如下所示(本地运行需要修改输入数据存放路径和输出数据存放路径):

 package com.mapreduce;

 import java.io.IOException;

 import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /***
* 1:用来描述一个特定的作业
* 比如,该作业使用哪个类作为逻辑处理中的map,那个作为reduce
* 2:还可以指定该作业要处理的数据所在的路径
* 还可以指定改作业输出的结果放到哪个路径
* @author Administrator
*
*/
public class WcRunner { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//创建配置文件
Configuration conf = new Configuration();
//获取一个作业
Job job = Job.getInstance(conf); //设置整个job所用的那些类在哪个jar包
job.setJarByClass(WcRunner.class); //本job使用的mapper和reducer的类
job.setMapperClass(WcMap.class);
job.setReducerClass(WcReduce.class); //指定reduce的输出数据key-value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class); //指定mapper的输出数据key-value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class); //指定要处理的输入数据存放路径
//FileInputFormat.setInputPaths(job, new Path("hdfs://master:9000/wc/srcdata/"));
FileInputFormat.setInputPaths(job, new Path("d:/wc/srcdata/")); //指定处理结果的输出数据存放路径
//FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/wc/output/"));
FileOutputFormat.setOutputPath(job, new Path("d:/wc/output/")); //将job提交给集群运行
job.waitForCompletion(true);
} }

然后去自己定义的盘里面创建文件夹即可:

然后直接运行出现下面的错误:

log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Exception in thread "main" java.io.IOException: Cannot initialize Cluster. Please check your configuration for mapreduce.framework.name and the correspond server addresses.
    at org.apache.hadoop.mapreduce.Cluster.initialize(Cluster.java:120)
    at org.apache.hadoop.mapreduce.Cluster.<init>(Cluster.java:82)
    at org.apache.hadoop.mapreduce.Cluster.<init>(Cluster.java:75)
    at org.apache.hadoop.mapreduce.Job$9.run(Job.java:1255)
    at org.apache.hadoop.mapreduce.Job$9.run(Job.java:1251)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:415)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1556)
    at org.apache.hadoop.mapreduce.Job.connect(Job.java:1250)
    at org.apache.hadoop.mapreduce.Job.submit(Job.java:1279)
    at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1303)
    at com.mapreduce.WcRunner.main(WcRunner.java:57)

解决办法:

缺少Jar包:hadoop-mapreduce-client-common-2.2.0.jar


好吧,最后还是没有实现在本地运行此运行,先在这里记一下吧。下面这个错搞不定,先做下笔记吧;

log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Exception
in thread "main" java.lang.IllegalArgumentException: Pathname
/c:/wc/output from hdfs://master:9000/c:/wc/output is not a valid DFS
filename.
    at org.apache.hadoop.hdfs.DistributedFileSystem.getPathName(DistributedFileSystem.java:194)
    at org.apache.hadoop.hdfs.DistributedFileSystem.access$000(DistributedFileSystem.java:102)
    at org.apache.hadoop.hdfs.DistributedFileSystem$17.doCall(DistributedFileSystem.java:1124)
    at org.apache.hadoop.hdfs.DistributedFileSystem$17.doCall(DistributedFileSystem.java:1120)
    at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
    at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1120)
    at org.apache.hadoop.fs.FileSystem.exists(FileSystem.java:1398)
    at org.apache.hadoop.mapreduce.lib.output.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:145)
    at org.apache.hadoop.mapreduce.JobSubmitter.checkSpecs(JobSubmitter.java:458)
    at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:343)
    at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1285)
    at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1282)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:415)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1556)
    at org.apache.hadoop.mapreduce.Job.submit(Job.java:1282)
    at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1303)
    at com.mapreduce.WcRunner.main(WcRunner.java:57)


7:MapReduce程序的几种提交运行模式:

本地模型运行
1:在windows的eclipse里面直接运行main方法,就会将job提交给本地执行器localjobrunner执行
      ----输入输出数据可以放在本地路径下(c:/wc/srcdata/)
      ----输入输出数据也可以放在hdfs中(hdfs://master:9000/wc/srcdata)
2:在linux的eclipse里面直接运行main方法,但是不要添加yarn相关的配置,也会提交给localjobrunner执行
      ----输入输出数据可以放在本地路径下(/home/hadoop/wc/srcdata/)
      ----输入输出数据也可以放在hdfs中(hdfs://master:9000/wc/srcdata)  
     
集群模式运行
1:将工程打成jar包,上传到服务器,然后用hadoop命令提交  hadoop jar wc.jar cn.itcast.hadoop.mr.wordcount.WCRunner
2:在linux的eclipse中直接运行main方法,也可以提交到集群中去运行,但是,必须采取以下措施:
      ----在工程src目录下加入 mapred-site.xml  和  yarn-site.xml
      ----将工程打成jar包(wc.jar),同时在main方法中添加一个conf的配置参数 conf.set("mapreduce.job.jar","wc.jar");

3:在windows的eclipse中直接运行main方法,也可以提交给集群中运行,但是因为平台不兼容,需要做很多的设置修改
        ----要在windows中存放一份hadoop的安装包(解压好的)
        ----要将其中的lib和bin目录替换成根据你的windows版本重新编译出的文件
        ----再要配置系统环境变量 HADOOP_HOME  和 PATH
        ----修改YarnRunner这个类的源码

一脸懵逼学习MapReduce的原理和编程(Map局部处理,Reduce汇总)和MapReduce几种运行方式的更多相关文章

  1. 一脸懵逼学习Hadoop中的序列化机制——流量求和统计MapReduce的程序开发案例——流量求和统计排序

    一:序列化概念 序列化(Serialization)是指把结构化对象转化为字节流.反序列化(Deserialization)是序列化的逆过程.即把字节流转回结构化对象.Java序列化(java.io. ...

  2. 一脸懵逼学习Hadoop中的MapReduce程序中自定义分组的实现

    1:首先搞好实体类对象: write 是把每个对象序列化到输出流,readFields是把输入流字节反序列化,实现WritableComparable,Java值对象的比较:一般需要重写toStrin ...

  3. 一脸懵逼学习基于CentOs的Hadoop集群安装与配置

    1:Hadoop分布式计算平台是由Apache软件基金会开发的一个开源分布式计算平台.以Hadoop分布式文件系统(HDFS)和MapReduce(Google MapReduce的开源实现)为核心的 ...

  4. 一脸懵逼学习基于CentOs的Hadoop集群安装与配置(三台机器跑集群)

    1:Hadoop分布式计算平台是由Apache软件基金会开发的一个开源分布式计算平台.以Hadoop分布式文件系统(HDFS)和MapReduce(Google MapReduce的开源实现)为核心的 ...

  5. 一脸懵逼学习Hive的安装(将sql语句翻译成MapReduce程序的一个工具)

    Hive只在一个节点上安装即可: 1.上传tar包:这个上传就不贴图了,贴一下上传后的,看一下虚拟机吧: 2.解压操作: [root@slaver3 hadoop]# tar -zxvf hive-0 ...

  6. 一脸懵逼学习HBase---基于HDFS实现的。(Hadoop的数据库,分布式的,大数据量的,随机的,实时的,非关系型数据库)

    1:HBase官网网址:http://hbase.apache.org/ 2:HBase表结构:建表时,不需要指定表中的字段,只需要指定若干个列族,插入数据时,列族中可以存储任意多个列(即KEY-VA ...

  7. 一脸懵逼学习HBase的搭建(注意HBase的版本)

    1:Hdfs分布式文件系统存的文件,文件存储. 2:Hbase是存储的数据,海量数据存储,作用是缓存的数据,将缓存的数据满后写入到Hdfs中. 3:hbase集群中的角色: ().一个或者多个主节点, ...

  8. 一脸懵逼学习Hive的使用以及常用语法(Hive语法即Hql语法)

    Hive官网(HQL)语法手册(英文版):https://cwiki.apache.org/confluence/display/Hive/LanguageManual Hive的数据存储 1.Hiv ...

  9. 一脸懵逼学习Hive的元数据库Mysql方式安装配置

    1:要想学习Hive必须将Hadoop启动起来,因为Hive本身没有自己的数据管理功能,全是依赖外部系统,包括分析也是依赖MapReduce: 2:七个节点跑HA集群模式的: 第一步:必须先将Zook ...

随机推荐

  1. shell脚本 统计一段程序运行时间【转】

    转自:https://bbs.csdn.net/topics/391943383#include <stdio.h> #include <stdlib.h> #include ...

  2. Jetbrain系列软件配置文件同步

    https://intellij-support.jetbrains.com/hc/en-us/articles/206544519-Directories-used-by-the-IDE-to-st ...

  3. liunx中的iptables

    作者:邓聪聪 iptables的入站端口放行策略: iptables -A INPUT -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT ...

  4. liunx之Centos6.8杀毒软件的安装

    作者:邓聪聪 为了防止服务器中病毒,安装了类似与Windowns的杀毒软件Clanav,过程如下 首先下载clamav的软件包,官方下载地址为http://www.clamav.net/downloa ...

  5. 037_nginx第三方扩展

    一.ngx_func_limit_req.conf(nginx限制请求数配置) # limit req zone limit_req_zone $binary_remote_addr $http_us ...

  6. C++编程题

    1.不用系统提供的字符串转int的功能,将一个字符串转换为对应的值 #include <iostream> using namespace std; static int StringTo ...

  7. MySQL查询语句练习题,测试基本够用了

    Sutdent表的定义 字段名 字段描述 数据类型 主键 外键 非空 唯一 自增 Id 学号 INT(10) 是 否 是 是 是 Name 姓名 VARCHAR(20) 否 否 是 否 否 Sex 性 ...

  8. IBM X 3650 M3服务器RAID0设置

    1 进入磁盘整列设置窗口 1.1 开机在提示符页面下按[F1]进入BIOS设置 1.2 依次进入子菜单[System Settings]à[Adapters and UEFI Drivers] 1.3 ...

  9. winform中textbox提示框

    在winform中向textbox输入内容时下面有提示信息,效果如图所示: private void Form1_Load(object sender, EventArgs e) {     Auto ...

  10. 随机生成n位随机数(包含大写字母、小写字母、数字)

    package com.java.weiju; import java.security.SecureRandom; import java.util.Date; import java.util.R ...