【洛谷P3455】ZAP-Queries
题目大意:求 $$\sum\limits_{i=1}a\sum\limits_{j=1}b[gcd(i,j)=c]$$
题解:学会了狄利克雷卷积。
\]
将艾弗森表达式转化成卷积的形式,在调换求和顺序,消去不必要的和式。最后利用除法分块+预处理的莫比乌斯函数前缀和在 \(O(\sqrt n)\) 时间内单次回答询问。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 5e4 + 10;
int mu[maxn], sum[maxn];
vector<int> primes;
bool vis[maxn];
void RunLinearSieve() {
mu[1] = 1, vis[1] = 1;
int n = 5e4;
for (int i = 2; i <= n; i++) {
if (!vis[i]) {
primes.push_back(i);
mu[i] = -1;
}
for (int j = 0; i * primes[j] <= n; j++) {
vis[i * primes[j]] = 1;
if (i % primes[j] == 0) {
mu[i * primes[j]] = 0;
break;
} else {
mu[i * primes[j]] = -mu[i];
}
}
}
for (int i = 1; i <= n; i++) {
sum[i] = sum[i - 1] + mu[i];
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int T;
cin >> T;
RunLinearSieve();
while (T--) {
LL a, b, c;
cin >> a >> b >> c;
a /= c, b /= c;
LL range = min(a, b);
LL ans = 0;
for (int i = 1; i <= range; i++) {
int j = min(a / (a / i), b / (b / i));
ans += (LL)(sum[j] - sum[i - 1]) * (a / i) * (b / i);
i = j;
}
cout << ans << endl;
}
return 0;
}
【洛谷P3455】ZAP-Queries的更多相关文章
- 洛谷 [P3455] ZAP
莫比乌斯函数 #include <iostream> #include <cstdio> #include <cmath> #include <cstring ...
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- 【刷题】洛谷 P3455 [POI2007]ZAP-Queries
题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...
- 洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301
https://www.luogu.org/problemnew/show/P3455 就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2 ...
- 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)
题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...
- 洛谷 P3455&BZOJ1101 【[POI2007]ZAP-Queries】
这应该是入坑莫比乌斯反演的第一道题了吧 其实题目让我们求的东西很简单,就是 \[ ans=\sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)=k \right ] ...
- 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块
正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
- 洛谷P3455 [POI2007]ZAP-Queries
题目大意: 给定\(n,m,k,\) 求 \[\sum\limits_{x=1}^n\sum\limits_{y=1}^m[gcd(x,y)==k]\] 莫比乌斯反演入门题,先进行一步转化,将每个\( ...
随机推荐
- MySQL的备份和回复
一.备份的原因 二.备份的类型 三.备份的方式 四.备份策略 五.备份工具
- ajax获取值的两种方法
详细连接https://blog.csdn.net/a1102325298/article/details/80785143 ajax获得表单值的俩种方法 2018年06月23日 17:12:02 延 ...
- Airflow 使用随笔(内含 TimeZone 和 Backfill 等的详解)
其实怎么部署 airflow 又哪些特性,然后功能又是如何全面都可以在 Reference 的文章里面找到,都不是重点这里就不赘述了. 这里重点谈一下我在部署完成仔细阅读文档之后觉得可以总结的一些东 ...
- 收藏一个带动画效果的ScrollViewer以及ScrollBar的模板
这里介绍一个带动画效果的ScrollViewer和ScrollBar,总共分为两个资源字典,直接拿来引用即可: 1 ScrollBarStyle.xaml <ResourceDictionary ...
- linux寻找依赖文件
在linux下编译安装软件有时候会遇到依赖文件找不到的情况,很多时候可以通过 sudo apt install -f 来解决:实在找不到怎么办,还有一个绝招可以用: 安装 apt-file sudo ...
- CSS边框效果
前面的话 本文将详细介绍CSS边框效果 半透明边框 border:10px solid hsla(0, 0%, 100%,.5); background-clip:padding-box; 缝边效果 ...
- 页面传递的都是string ; 每个标签要有name的原因是为了取值 因为传递给后台是键值对的形式
页面传递的都是string ; 每个标签要有name的原因是为了取值 因为传递给后台是键值对的形式
- iOS 根据时间戳计算聊天列表的时间(上午/下午)
把时间戳转成聊天时间(上午 10:00 . 昨天 14:00 . 3月15日 15:00) +(NSString*)ChatingTime:(NSString *)timestring{ int ...
- hdu-3374(kmp+最小表示法)
题意:给你一个字符串,这个字符串我们可以把把他变成n个字符串按照以下规则:将当前字符串第一个放到字符串最后一位,字符串的下标依次向前推一位,比如:s[1] s[2 ]s[3] s[4]->s[2 ...
- MySQL中表复制:create table like 与 create table as select
CREATE TABLE A LIKE B 此种方式在将表B复制到A时候会将表B完整的字段结构和索引复制到表A中来. CREATE TABLE A AS SELECT x,x,x,xx FROM B ...