题目大意:求 $$\sum\limits_{i=1}a\sum\limits_{j=1}b[gcd(i,j)=c]$$

题解:学会了狄利克雷卷积。

\[\epsilon=\mu \ast 1
\]

将艾弗森表达式转化成卷积的形式,在调换求和顺序,消去不必要的和式。最后利用除法分块+预处理的莫比乌斯函数前缀和在 \(O(\sqrt n)\) 时间内单次回答询问。

代码如下

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;

const int maxn = 5e4 + 10;

int mu[maxn], sum[maxn];
vector<int> primes;
bool vis[maxn]; void RunLinearSieve() {
mu[1] = 1, vis[1] = 1;
int n = 5e4;
for (int i = 2; i <= n; i++) {
if (!vis[i]) {
primes.push_back(i);
mu[i] = -1;
}
for (int j = 0; i * primes[j] <= n; j++) {
vis[i * primes[j]] = 1;
if (i % primes[j] == 0) {
mu[i * primes[j]] = 0;
break;
} else {
mu[i * primes[j]] = -mu[i];
}
}
}
for (int i = 1; i <= n; i++) {
sum[i] = sum[i - 1] + mu[i];
}
} int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int T;
cin >> T;
RunLinearSieve();
while (T--) {
LL a, b, c;
cin >> a >> b >> c;
a /= c, b /= c;
LL range = min(a, b);
LL ans = 0;
for (int i = 1; i <= range; i++) {
int j = min(a / (a / i), b / (b / i));
ans += (LL)(sum[j] - sum[i - 1]) * (a / i) * (b / i);
i = j;
}
cout << ans << endl;
}
return 0;
}

【洛谷P3455】ZAP-Queries的更多相关文章

  1. 洛谷 [P3455] ZAP

    莫比乌斯函数 #include <iostream> #include <cstdio> #include <cmath> #include <cstring ...

  2. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  3. 【刷题】洛谷 P3455 [POI2007]ZAP-Queries

    题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...

  4. 洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301

    https://www.luogu.org/problemnew/show/P3455 就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2 ...

  5. 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)

    题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...

  6. 洛谷 P3455&BZOJ1101 【[POI2007]ZAP-Queries】

    这应该是入坑莫比乌斯反演的第一道题了吧 其实题目让我们求的东西很简单,就是 \[ ans=\sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)=k \right ] ...

  7. 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块

    正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...

  8. 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...

  9. 洛谷P3455 [POI2007]ZAP-Queries

    题目大意: 给定\(n,m,k,\) 求 \[\sum\limits_{x=1}^n\sum\limits_{y=1}^m[gcd(x,y)==k]\] 莫比乌斯反演入门题,先进行一步转化,将每个\( ...

随机推荐

  1. Zookeeper的作用,在Hadoop及hbase中具体作用

    什么是Zookeeper,Zookeeper的作用是什么,在Hadoop及hbase中具体作用是什么 一.什么是Zookeeper ZooKeeper 顾名思义 动物园管理员,他是拿来管大象(Hado ...

  2. Java内存泄漏分析

    https://www.javatang.com/archives/2017/11/08/11582145.html?tdsourcetag=s_pcqq_aiomsg

  3. dbexpress连接mysql提示Operation not allowed on a unidirectional dataset

    最近刚接触delphi,在了解到dbExpress连接mysql的时候,出现了一些问题,特记录下 我遇到的问题有两个 1. TDBGrid --DataSet=TDataSource1 TDataSo ...

  4. 解决spring多线程不共享事务的问题

    在一个事务中使用多线程操作数据库时,若同时存在对数据库的读写操作,可能出现数据读取的不准确,因为多线程将不会共享同一个事务(也就是说子线程和主线程的事务不一样),为了解决这个问题,可以使用spring ...

  5. Java多线程之静态代理

    package org.study2.javabase.ThreadsDemo.staticproxy; /** * @Date:2018-09-18 静态代理 设计模式 * 1.真实角色 * 2.代 ...

  6. WMS工作原理

    图1:创建窗口 图2:通信过程 我们知道其实任何一个窗口的创建,最终都是会创建一个 ViewRootImpl对象.ViewRootImpl 是一很重要的类,类似 ActivityThread 负责跟A ...

  7. Linux命令归纳

    Linux基本命令 Linux Xshell远程连接 ssh 用户名@id地址 例如: ssh root@192.168.11.53 增加类指令 创建文件夹 mkdir 文件名 mkdir -p 路径 ...

  8. python optparser模块

    python的内置模块中对于命令行的解析模块共两个getopt 和 optparse .不过getopt过于简单,往往不能满足需求.此时可以使用optparse模块.这个模块相对于getopt更新,功 ...

  9. python之旅第八篇--异常

    判断类与对象关系 isinstance #判断对象obj是否是由cls类创建的 class Foo(object): pass obj = Foo() print isinstance(obj,Foo ...

  10. BZOJ1503[NOI2004]郁闷的出纳员——treap

    OIER公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的工资.这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常调整员工的工资.如果他心 ...