一. 问题描述

  已知n个人,分别以编号1,2,3,...,n表示,围坐在一张圆桌周围。从编号为k的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列,求最后一个出列人的编号,可记为P(n,m,k),或记为P(n,m,k,s = 1),其中s为起始编号。

二. 递归求解

  n(假设n值很大,而k、m值都很小)个人围成一圈,从k开始以m为步长报数,第k+m-1个人出列;于是转化为n-1个人围成一圈,从(k+m-1)+1开始以m为步长报数,第(k+m)+m-1个人出列;再转化为求n-2个人围成一圈,从(k+2m-1)+1开始以m为步长报数,第(k+2m)+m-1个人出列;依次类推,直至只剩1个人围成一圈,该人出列即为问题的解。有如下推导过程:

  1. 因为第一个出圈者是k+m-1,则下一个起始报数者k+m,原圈可增加一套新编号a,用1表示k+m,2表示k+m+1,依此类推,n则表示k+m-1,于是原圈又可对应至新环:1,2,......,n-1,n ------ ①。
  2. 因为k+m-1将出圈,即①中n将出圈,余下n-1人,于是有:1,2,......,n-1 ------ ②,对②求P(n-1,m,1),则P(n > 1,m,k) = (P(n-1,m,1) + (k + m - 2)) % n + 1 ------ ⑴(取模前先减1,取模后再加1,以保证落在[1,n]这个区间之上)。由于形如(k + num) % n = (k % n + num) % n (num >= 0)是成立的,所以当k>n或m>n时,⑴也是成立的。
  3. 当k=1,有P(n > 1,m,1) = (P(n-1,m,1) + m - 1) % n + 1 ------ ⑵,下文的Josephus_by_k_eq_1(n, m, p = 1, i = 1)实现了⑵。
  4. 一般地,P(1,m,k) = P(1,1,1) = 1 ------ ⑶。
  5. 由⑵可知P(n-1,m,1) = (P(n-2,m,1) + m - 1) % (n-1) + 1 ------ ⑷,于是P(n,m,k) 的求解可分作两步完成,下文的Josephus_by_k(n, m, k)实现了这一思想:
    步骤一:通过等式⑶、⑷递推求解P(n-1,m,1)
    
    步骤二:通过等式⑴求解P(n,m,k)
  6. 当约瑟夫环不是用1~n进行编号时,而是用1 + (s-1)~n + (s-1)进行任意编号,最后出圈者P(n,m,k,s) = P(n,m,k-(s-1)+ (s-1) ------ ⑸,下文的Josephus_by_k_and_s(n, m, k, s)实现了 ⑸。

 

  需特别指出的是,上述推导过程并没有直接得到P(n,m,k > 1)的某种递推关系,只是解决了P(n,m,k = 1)这个特列的递推关系。对于⑵有人给出如下的类似描述,实在费解。因为其描述中k最终实际是一个无关的参数,但P(n,m,k)却与k有极大的关联。事实上,P(3,2,3) = 2,而P(3,2,1) = 3 。

P(n, m, k) = 1  (i = 1)

P(n, m, k) = (P(i - 1, m, k ) + m - 1) % n + 1  (i > 1)

其下列算法实现虽然在注释中给k定义为起始报数位置,实际上不是P(n, m, k)中k的含义,而是代表P(n-1, m, 1)
long Josephus(long n,long m,long k){ //参数分别为:总人数,出圈步长,起始报数位置,
for (long i = 1; i <= n; i++)
k = (k + m - 1) % i + 1;
return k; //返回最后一人的位置
}

三. P(n,m,1) = (P(n-1,m,1) + m - 1) % n + 1的Javascript算法实现:Josephus_by_k_eq_1(n, m, p = 1, i = 1)

/**
* 约瑟夫环(编号1~n)问题求最后出圈者P(n,m,k = 1)
*
* @para int n 总人数
* @para int m 报数步长
* @para int p P(n-1,m,1)
* @para int i 迭代控制变量
* @return int 最后出圈者
*/ function Josephus_by_k_eq_1(n, m, p = 1, i = 1) {
if (i > n) {
return p; //返回最后出圈者
} else {
p = (p + m - 1) % i + 1;
i = i + 1; return Josephus_by_k_eq_1(n, m, p, i);
}
}

四. P(n,m,k) = (P(n-1,m,1) + (k + m - 2)) % n + 1Javascript算法实现:Josephus_by_k(n, m, k)

/**
* 约瑟夫环(编号1~n)问题求最后出圈者P(n,m,k)
*
* @para int n 总人数
* @para int m 报数步长
* @para int k 起始报数者
* @return int 最后出圈者
*/ function Josephus_by_k(n, m, k) {
return (Josephus_by_k_eq_1(n - 1, m) + (k + m - 2)) % n + 1;
}

五.P(n,m,k,s) = P(n,m,k-(s-1)+ (s-1)Javascript算法实现:Josephus_by_k_and_s(n, m, k, s)

/**
* 约瑟夫环(编号1+(s-1)~n+(s-1))问题求最后出圈者P(n,m,k,s)
*
* @para int n 总人数
* @para int m 报数步长
* @para int k 起始报数者
* @para int s 起始编号
* @return int 最后出圈者
*/ function Josephus_by_k_and_s(n, m, k, s) {
return Josephus_by_k(n, m, k - (s - 1)) + (s - 1);
}

关于递推算法求解约瑟夫环问题P(n,m,k,s)的更多相关文章

  1. 基本算法思想之递推算法思想(C++语言描述)

    递推算法是非常常用的算法思想,在数学计算等场合有着广泛的应用.递推算法适合有明显公式规律的场合. 递推算法基本思想 递推算法是一种理性思维莫斯的代表,根据已有的数据和关系,逐步推到而得到结果.递推算法 ...

  2. 【约瑟夫环变形】UVa 1394 - And Then There Was One

    首先看到这题脑子里立刻跳出链表..后来继续看如家的分析说,链表法时间复杂度为O(n*k),肯定会TLE,自己才意识到果然自个儿又头脑简单了 T^T. 看如家的分析没怎么看懂,后来发现这篇自己理解起来更 ...

  3. 组合数学--约瑟夫环问题 Josephus

    约瑟夫斯问题(有时也称为约瑟夫斯置换),是一个出现在计算机科学和数学中的问题.在计算机编程的算法中,类似问题又称为约瑟夫环. 有n个囚犯站成一个圆圈,准备处决.首先从一个人开始,越过k-2个人(因为第 ...

  4. 小小c#算法题 - 12 - Joseph Circle(约瑟夫环)

    约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数(从1开始报数),数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又 ...

  5. 通过例子进阶学习C++(六)你真的能写出约瑟夫环么

    本文是通过例子学习C++的第六篇,通过这个例子可以快速入门c++相关的语法. 1.问题描述 n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局:然后从出局的下一个人重新 ...

  6. C++版 - 剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题,ZOJ 1088:System Overload类似)题解

    剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题) 原书题目:0, 1, - , n-1 这n个数字排成一个圈圈,从数字0开始每次从圆圏里删除第m个数字.求出这个圈圈里剩下的最后一个数字 ...

  7. Joseph POJ - 1012 约瑟夫环递推

    题意:约瑟夫环  初始前k个人后k个人  问m等于多少的时候 后k个先出去 题解:因为前k个位置是不动的,所以只要考虑每次递推后的位置在不在前面k个就行 有递推式 ans[i]=(ans[i-1]+m ...

  8. LA 3882 经典约瑟夫环问题的数学递推解法

    就是经典约瑟夫环问题的裸题 我一开始一直没理解这个递推是怎么来的,后来终于理解了 假设问题是从n个人编号分别为0...n-1,取第k个, 则第k个人编号为k-1的淘汰,剩下的编号为  0,1,2,3. ...

  9. 51nod 1073约瑟夫环 递归公式法

    约瑟夫环问题的原来描述为,设有编号为1,2,--,n的n(n>0)个人围成一个圈,从第1个人开始报数,报到m时停止报数,报m的人出圈,再从他的下一个人起重新报数,报到m时停止报数,报m的出圈,- ...

随机推荐

  1. 《Tensorflow从入门到精通》

    第一 开发环境搭建 1. tensorflow的环境搭建 windows下安装cpu版tensorflow: pip install tensorflow 在ubuntu上安装gpu版tensorfl ...

  2. Windows上安装 TensorFlow及简单命令

    1.官网及帮助文档 官网: https://www.tensorflow.org/install/install_windows 中文帮助文档:https://efeiefei.gitbooks.io ...

  3. Nginx 反向代理接收用户包体方式

    陶辉91课 如果proxy_request_buffering 设置为on的时候是等待nginx读取完包体后再发送上游服务器 一般依赖于nginx处理能力  client_body_in_file_o ...

  4. LAMP架构部署和动态网站环境的配置

    实验环境: 操作系统:centos 7.5 服务器IP:192.168.10.5 运行用户:root 连接工具:xshell工具 web环境:Linux+apache+php+mariadb(LAMP ...

  5. Qt QTimer

    QTimer类提供了重复和单次触发信号的定时器. QTimer类为定时器提供了一个高级别的编程接口.很容易使用:首先,创建一个QTimer,连接timeout()信号到适当的槽函数,并调用start( ...

  6. .net core 2.0 数据访问-迁移

    将用于进行迁移的 Entity Framework Core NuGet包 添加到`.csproj`文件 <ItemGroup> <DotNetCliToolReference In ...

  7. Yahoo Programming Contest 2019 自闭记

    A:签到. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> ...

  8. Android InputType

    转载: http://blog.csdn.net/wei_zhi/article/details/50094503 在Android开发过程中,我们经常使用到EditText控件,并且会根据各种需求设 ...

  9. Repository HDU - 2846 字典树

    题意:给出很多很多很多很多个 单词 类似搜索引擎一下 输入一个单词 判断有一个字符串包含这个单词 思路:字典树变体,把每个单词的后缀都扔字典树里面,这里要注意dd是一个单词 但是把d 和dd都放字典树 ...

  10. scrapy入门与进阶

    Scrapy是用纯Python实现一个为了爬取网站数据.提取结构性数据而编写的应用框架,用途非常广泛. 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非 ...