关于递推算法求解约瑟夫环问题P(n,m,k,s)
一. 问题描述
已知n个人,分别以编号1,2,3,...,n表示,围坐在一张圆桌周围。从编号为k的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列,求最后一个出列人的编号,可记为P(n,m,k),或记为P(n,m,k,s = 1),其中s为起始编号。
二. 递归求解
n(假设n值很大,而k、m值都很小)个人围成一圈,从k开始以m为步长报数,第k+m-1个人出列;于是转化为n-1个人围成一圈,从(k+m-1)+1开始以m为步长报数,第(k+m)+m-1个人出列;再转化为求n-2个人围成一圈,从(k+2m-1)+1开始以m为步长报数,第(k+2m)+m-1个人出列;依次类推,直至只剩1个人围成一圈,该人出列即为问题的解。有如下推导过程:
- 因为第一个出圈者是k+m-1,则下一个起始报数者k+m,原圈可增加一套新编号a,用1表示k+m,2表示k+m+1,依此类推,n则表示k+m-1,于是原圈又可对应至新环:1,2,......,n-1,n ------ ①。
- 因为k+m-1将出圈,即①中n将出圈,余下n-1人,于是有:1,2,......,n-1 ------ ②,对②求P(n-1,m,1),则P(n > 1,m,k) = (P(n-1,m,1) + (k + m - 2)) % n + 1 ------ ⑴(取模前先减1,取模后再加1,以保证落在[1,n]这个区间之上)。由于形如(k + num) % n = (k % n + num) % n (num >= 0)是成立的,所以当k>n或m>n时,⑴也是成立的。
- 当k=1,有P(n > 1,m,1) = (P(n-1,m,1) + m - 1) % n + 1 ------ ⑵,下文的Josephus_by_k_eq_1(n, m, p = 1, i = 1)实现了⑵。
- 一般地,P(1,m,k) = P(1,1,1) = 1 ------ ⑶。
- 由⑵可知P(n-1,m,1) = (P(n-2,m,1) + m - 1) % (n-1) + 1 ------ ⑷,于是P(n,m,k) 的求解可分作两步完成,下文的Josephus_by_k(n, m, k)实现了这一思想:
步骤一:通过等式⑶、⑷递推求解P(n-1,m,1) 步骤二:通过等式⑴求解P(n,m,k)
- 当约瑟夫环不是用1~n进行编号时,而是用1 + (s-1)~n + (s-1)进行任意编号,最后出圈者P(n,m,k,s) = P(n,m,k-(s-1)) + (s-1) ------ ⑸,下文的Josephus_by_k_and_s(n, m, k, s)实现了 ⑸。
需特别指出的是,上述推导过程并没有直接得到P(n,m,k > 1)的某种递推关系,只是解决了P(n,m,k = 1)这个特列的递推关系。对于⑵有人给出如下的类似描述,实在费解。因为其描述中k最终实际是一个无关的参数,但P(n,m,k)却与k有极大的关联。事实上,P(3,2,3) = 2,而P(3,2,1) = 3 。
P(n, m, k) = 1 (i = 1) P(n, m, k) = (P(i - 1, m, k ) + m - 1) % n + 1 (i > 1) 其下列算法实现虽然在注释中给k定义为起始报数位置,实际上不是P(n, m, k)中k的含义,而是代表P(n-1, m, 1)
long Josephus(long n,long m,long k){ //参数分别为:总人数,出圈步长,起始报数位置,
for (long i = 1; i <= n; i++)
k = (k + m - 1) % i + 1;
return k; //返回最后一人的位置
}
三. P(n,m,1) = (P(n-1,m,1) + m - 1) % n + 1的Javascript算法实现:Josephus_by_k_eq_1(n, m, p = 1, i = 1)
/**
* 约瑟夫环(编号1~n)问题求最后出圈者P(n,m,k = 1)
*
* @para int n 总人数
* @para int m 报数步长
* @para int p P(n-1,m,1)
* @para int i 迭代控制变量
* @return int 最后出圈者
*/ function Josephus_by_k_eq_1(n, m, p = 1, i = 1) {
if (i > n) {
return p; //返回最后出圈者
} else {
p = (p + m - 1) % i + 1;
i = i + 1; return Josephus_by_k_eq_1(n, m, p, i);
}
}
四. P(n,m,k) = (P(n-1,m,1) + (k + m - 2)) % n + 1的Javascript算法实现:Josephus_by_k(n, m, k)
/**
* 约瑟夫环(编号1~n)问题求最后出圈者P(n,m,k)
*
* @para int n 总人数
* @para int m 报数步长
* @para int k 起始报数者
* @return int 最后出圈者
*/ function Josephus_by_k(n, m, k) {
return (Josephus_by_k_eq_1(n - 1, m) + (k + m - 2)) % n + 1;
}
五.P(n,m,k,s) = P(n,m,k-(s-1)) + (s-1)的Javascript算法实现:Josephus_by_k_and_s(n, m, k, s)
/**
* 约瑟夫环(编号1+(s-1)~n+(s-1))问题求最后出圈者P(n,m,k,s)
*
* @para int n 总人数
* @para int m 报数步长
* @para int k 起始报数者
* @para int s 起始编号
* @return int 最后出圈者
*/ function Josephus_by_k_and_s(n, m, k, s) {
return Josephus_by_k(n, m, k - (s - 1)) + (s - 1);
}
关于递推算法求解约瑟夫环问题P(n,m,k,s)的更多相关文章
- 基本算法思想之递推算法思想(C++语言描述)
递推算法是非常常用的算法思想,在数学计算等场合有着广泛的应用.递推算法适合有明显公式规律的场合. 递推算法基本思想 递推算法是一种理性思维莫斯的代表,根据已有的数据和关系,逐步推到而得到结果.递推算法 ...
- 【约瑟夫环变形】UVa 1394 - And Then There Was One
首先看到这题脑子里立刻跳出链表..后来继续看如家的分析说,链表法时间复杂度为O(n*k),肯定会TLE,自己才意识到果然自个儿又头脑简单了 T^T. 看如家的分析没怎么看懂,后来发现这篇自己理解起来更 ...
- 组合数学--约瑟夫环问题 Josephus
约瑟夫斯问题(有时也称为约瑟夫斯置换),是一个出现在计算机科学和数学中的问题.在计算机编程的算法中,类似问题又称为约瑟夫环. 有n个囚犯站成一个圆圈,准备处决.首先从一个人开始,越过k-2个人(因为第 ...
- 小小c#算法题 - 12 - Joseph Circle(约瑟夫环)
约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数(从1开始报数),数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又 ...
- 通过例子进阶学习C++(六)你真的能写出约瑟夫环么
本文是通过例子学习C++的第六篇,通过这个例子可以快速入门c++相关的语法. 1.问题描述 n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局:然后从出局的下一个人重新 ...
- C++版 - 剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题,ZOJ 1088:System Overload类似)题解
剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题) 原书题目:0, 1, - , n-1 这n个数字排成一个圈圈,从数字0开始每次从圆圏里删除第m个数字.求出这个圈圈里剩下的最后一个数字 ...
- Joseph POJ - 1012 约瑟夫环递推
题意:约瑟夫环 初始前k个人后k个人 问m等于多少的时候 后k个先出去 题解:因为前k个位置是不动的,所以只要考虑每次递推后的位置在不在前面k个就行 有递推式 ans[i]=(ans[i-1]+m ...
- LA 3882 经典约瑟夫环问题的数学递推解法
就是经典约瑟夫环问题的裸题 我一开始一直没理解这个递推是怎么来的,后来终于理解了 假设问题是从n个人编号分别为0...n-1,取第k个, 则第k个人编号为k-1的淘汰,剩下的编号为 0,1,2,3. ...
- 51nod 1073约瑟夫环 递归公式法
约瑟夫环问题的原来描述为,设有编号为1,2,--,n的n(n>0)个人围成一个圈,从第1个人开始报数,报到m时停止报数,报m的人出圈,再从他的下一个人起重新报数,报到m时停止报数,报m的出圈,- ...
随机推荐
- 运维常用mysql语句
1..select @@version; ##查询当前mysql的版本. 2. show variables like 'port';##查看mysql实例的端口. 3.show variables ...
- zsh & tree & macOS
zsh & tree & macOS https://unix.stackexchange.com/questions/22803/counting-files-in-leaves-o ...
- python 编码格式
1. 字符编码简介 1.1. ASCII ASCII(American Standard Code for Information Interchange),是一种单字节的编码.计算机世界里一开始只有 ...
- Lodop如何打印直线
Lodop打印设计提供了可视化设计,生成代码的方便,在打印设计界面上,选择添加打印项的时候,可以看到没有添加直线选项,可添加斜线,然后把添加的斜线调整成直线:线宽=高 -----水平直线线宽=宽--- ...
- JavaScript Decorators 的简单理解
Decorators,装饰器的意思, 所谓装饰就是对一个物件进行美化,让它变得更漂亮.最直观的例子就是房屋装修.你买了一套房子,但是毛坯房,你肯定不想住,那就对它装饰一下,床,桌子,电视,冰箱等一通买 ...
- ES6函数增强
函数参数可以拥有默认值.调用函数时,如果没有进行相应的实参传递,参数就会使用默认值.怎么给参数提供默认值呢?很简单,声明函数时候,给形参赋一个值就可以了,这个值就是参数的默认值. // num2拥有默 ...
- hdu-1711(kmp)
题意:给你两串数字,问你第二串数字第一次出现在第一串数字的位置,没有输出-1: 解题思路:其是就是字符串匹配,就是这里是数字匹配,把char数组改成int型就可以了: 代码: #include< ...
- 实现中英文混合string的逆向输出
#include <iostream> using namespace std; // 输入一个字符串(包括英文和中文),将其反序输出, 如: // hello 今天真热 ---> ...
- 微信小程序——demo合集及简单的文档解读【五】
官方Demo https://github.com/wechat-miniprogram/miniprogram-demo 其他Demo https://www.cnblogs.com/ytkah/p ...
- 轮询、长轮询、websock
引入 Web端即时通讯技术:即时通讯技术简单的说就是实现这样一种功能:服务器端可以即时地将数据的更新或变化反应到客户端,例如消息即时推送等功能都是通过这种技术实现的.但是在Web中,由于浏览器的限制, ...