POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 46727 | Accepted: 15899 |
Description
Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
Output
Sample Input
5 5 1 2 20 2 3 30 3 4 20 4 5 20 1 5 100
Sample Output
90
Hint
There are five landmarks.
OUTPUT DETAILS:
Bessie can get home by following trails 4, 3, 2, and 1.
Dijkstra()
#include<iostream> #include<cstdio> #include<cstring> #include<queue> #include<algorithm> using namespace std; typedef __int64 LL; const int maxn = 2005; const int INF = 0x3f3f3f3f; struct Edge{ int u,v,next; LL w; bool operator < (const Edge & a)const { return w > a.w; } }edge[maxn<<1] ; int tot = 0,head[maxn]; bool vis[maxn]; LL dis[maxn]; void addedge(int u,int v,LL w) { edge[tot] = (Edge){u,v,head[u],w }; head[u] = tot++; } void Dijkstra() { priority_queue<Edge>que; Edge p; memset(dis,INF,sizeof(dis)); memset(vis,false,sizeof(vis)); p.v = 1; que.push(p); dis[1] = 0; while (!que.empty()) { p = que.top(); que.pop(); int u = p.v; if (vis[u]) continue; vis[u] = true; for (int i = head[u];i != -1;i = edge[i].next) { int v = edge[i].v; if (dis[u] + edge[i].w < dis[v]) { dis[v] = dis[u] + edge[i].w; p.u = u,p.v = v,p.w = dis[v]; que.push(p); } } } } int main() { //freopen("input.txt","r",stdin); int T,N,u,v; LL w; memset(head,-1,sizeof(head)); scanf("%d%d",&T,&N); for (int i = 0;i < T;i++) { scanf("%d%d%I64d",&u,&v,&w); addedge(u,v,w); addedge(v,u,w); } Dijkstra(); printf("%I64d\n",dis[N]); return 0; }
spfa()
#include<cstdio> #include<cstring> #include<iostream> #include<queue> #include<algorithm> using namespace std; const int INF = 0x3f3f3f3f; const int MAX_N = 1005; bool flag[MAX_N]; int edge[MAX_N][MAX_N]; void spfa(int n) { int dis[MAX_N]; queue<int>que; memset(flag,false,sizeof(flag)); memset(dis,0x3f3f3f3f,sizeof(dis)); dis[1] = 0; que.push(1); flag[1] = true; while (!que.empty()) { int curval = que.front(); que.pop(); flag[curval] = false; for (int i = 1;i <= n;i++) { if (dis[curval] < dis[i] - edge[curval][i]) { dis[i] = dis[curval] + edge[curval][i]; if (!flag[i]) { que.push(i); flag[i] = true; } } } } printf("%d\n",dis[n]); } int main() { int N,T; while (~scanf("%d%d",&T,&N)) { int u,v,w; for (int i = 1;i <= N;i++) { for (int j = 1;j <= i;j++) { if (i == j) edge[i][j] = 0; else edge [i][j] = edge[j][i] = INF; } } for (int i = 0;i < T;i++) { scanf("%d%d%d",&u,&v,&w); /*if (w < edge[u][v]) { edge[u][v] = edge[v][u] = w; }*/ edge[u][v] = edge[v][u] = min(w,edge[u][v]); } spfa(N); } return 0; }
POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)的更多相关文章
- POJ 2387 Til the Cows Come Home(模板——Dijkstra算法)
题目连接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...
- POJ 2387 Til the Cows Come Home(最短路模板)
题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...
- POJ 2387 Til the Cows Come Home --最短路模板题
Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...
- POJ 2387 Til the Cows Come Home (图论,最短路径)
POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...
- POJ.2387 Til the Cows Come Home (SPFA)
POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...
- Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)
Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...
- POJ 2387 Til the Cows Come Home
题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K ...
- 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)
Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33015 Accepted ...
- POJ 2387 Til the Cows Come Home (最短路 dijkstra)
Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...
随机推荐
- jquery的选择器
一.基本选择器 1.$("#id") id选择器,返回单个元素 2.$(".class") class选择器,返回集合元素 3.$("element& ...
- C++02.访问控制
1.class是struct的扩展,它包括数据成员和成员函数. 2.在C++中,有三种访问权限: (1)private:默认,只供类内部的函数使用. (2)public:类外的程序可以使用. (3)p ...
- iOS HTTP访问网络受限
HTTP访问网络受限,只需要在项目工程里的Info.plist添加 <key>NSAppTransportSecurity</key> <dict> <key ...
- SQL Server5个系统数据库
SQL Server一共有5个系统数据库:master:记录SQL Server系统的所有系统级信息,例如:登陆账户信息.链接服务器和系统配置设置.记录其他所有数据库的存在.数据文件的位置.SQL S ...
- JSTREE 实现AJAX重载入时刷新所有节点树
$().ready(function() { var tree = $('#tree'); tree.jstree({ 'core': { data: null } }); $("#xr ...
- list<T> 的使用方法。
首先讲一个经常用到的Contains( )方法,用来测试一个元素是否在List内.这个功能跟SQL里面的" like % %"类似. 这个方法在数组中也存在,因为集合其实就是动态数 ...
- redis3.0配置文件详解
redis.conf #redis.conf # Redis configuration file example. # ./redis-server /path/to/redis.conf #### ...
- [LeetCode] Reverse Words in a String II 翻转字符串中的单词之二
Given an input string, reverse the string word by word. A word is defined as a sequence of non-space ...
- [网站性能1]对.net系统架构改造的一点经验和教训
文章来源:http://www.admin10000.com/document/2111.html 在互联网行业,基于Unix/Linux的网站系统架构毫无疑问是当今主流的架构解决方案,这不仅仅是因为 ...
- Tower是个不错的项目管理开放平台
简单,易用,轻量级,挺多大项目都在用. 目前公司的项目也在使用,但是从高层到底下,随意惯了,最终没有用起来. 感觉适合年轻激情的创业公司团队来使用. 附上地址:https://tower.im/