Hadoop 倒排索引
倒排索引是文档检索系统中最常用的数据结构,被广泛地应用于全文搜索引擎。它主要是用来存储某个单词(或词组)在一个文档或一组文档中存储位置的映射,即提供了一种根据内容来查找文档的方式。由于不是根据文档来确定文档所包含的内容,而是进行相反的操作,因而称为倒排索引(Inverted Index)。
一、实例描述
倒排索引简单地就是,根据单词,返回它在哪个文件中出现过,而且频率是多少的结果。这就像百度里的搜索,你输入一个关键字,那么百度引擎就迅速的在它的服务器里找到有该关键字的文件,并根据频率和其他的一些策略(如页面点击投票率)等来给你返回结果。这个过程中,倒排索引就起到很关键的作用。
样例输入:

样例输出:

二、设计思路
倒排索引涉及几个过程:Map过程,Combine过程,Reduce过程。
Map过程:
当你把需要处理的文档上传到hdfs时,首先默认的TextInputFormat类对输入的文件进行处理,得到文件中每一行的偏移量和这一行内容的键值对<偏移量,内容>做为map的输入。在改写map函数的时候,我们就需要考虑,怎么设计key和value的值来适合MapReduce框架,从而得到正确的结果。由于我们要得到单词,所属的文档URL,词频,而<key,value>只有两个值,那么就必须得合并其中得两个信息了。这里我们设计key=单词+URL,value=词频。即map得输出为<单词+URL,词频>,之所以将单词+URL做为key,时利用MapReduce框架自带得Map端进行排序。
Combine过程:
Combine过程将key值相同得value值累加,得到一个单词在文档上得词频。但是为了把相同得key交给同一个reduce处理,我们需要设计为key=单词,value=URL+词频。
Reduce过程:
Reduce过程其实就是一个合并的过程了,只需将相同的key值的value值合并成倒排索引需要的格式即可。
三、程序代码
程序代码如下:
import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class InvertedIndex { public static class Map extends Mapper<LongWritable, Text, Text, Text>{
private static Text word = new Text();
private static Text one = new Text(); @Override
protected void map(LongWritable key, Text value,Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
// super.map(key, value, context);
String fileName = ((FileSplit)context.getInputSplit()).getPath().getName();
StringTokenizer st = new StringTokenizer(value.toString());
while (st.hasMoreTokens()) {
word.set(st.nextToken()+"\t"+fileName);
context.write(word, one);
}
}
} public static class Combine extends Reducer<Text, Text, Text, Text>{
private static Text word = new Text();
private static Text index = new Text(); @Override
protected void reduce(Text key, Iterable<Text> values,Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
// super.reduce(arg0, arg1, arg2);
String[] splits = key.toString().split("\t");
if (splits.length != 2) {
return ;
}
long count = 0;
for(Text v:values){
count++;
}
word.set(splits[0]);
index.set(splits[1]+":"+count);
context.write(word, index);
}
} public static class Reduce extends Reducer<Text, Text, Text, Text>{
private static StringBuilder sub = new StringBuilder(256);
private static Text index = new Text(); @Override
protected void reduce(Text word, Iterable<Text> values,Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
// super.reduce(arg0, arg1, arg2);
for(Text v:values){
sub.append(v.toString()).append(";");
}
index.set(sub.toString());
context.write(word, index);
sub.delete(0, sub.length());
}
} public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
if(otherArgs.length!=2){
System.out.println("Usage:wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf,"Invert Index ");
job.setJarByClass(InvertedIndex.class); job.setMapperClass(Map.class);
job.setCombinerClass(Combine.class);
job.setReducerClass(Reduce.class); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);
} }
Hadoop 倒排索引的更多相关文章
- hadoop倒排索引
1.前言 学习hadoop的童鞋,倒排索引这个算法还是挺重要的.这是以后展开工作的基础.首先,我们来认识下什么是倒拍索引: 倒排索引简单地就是:根据单词,返回它在哪个文件中出现过,而且频率是多少的结果 ...
- Hadoop之倒排索引
前言: 从IT跨度到DT,如今的数据每天都在海量的增长.面对如此巨大的数据,如何能让搜索引擎更好的工作呢?本文作为Hadoop系列的第二篇,将介绍分布式情况下搜索引擎的基础实现,即“倒排索引”. 1. ...
- hadoop学习笔记之倒排索引
开发工具:eclipse 目标:对下面文档phone_numbers进行倒排索引: 13599999999 1008613899999999 12013944444444 13800138000137 ...
- hadoop实现倒排索引
hadoop实现倒排索引 本文用hadoop实现倒排索引算法,用基本的分两步完成,不使用combine 第一步 读入文档,统计文档中各个单词的个数,与word count类似,但这里把word-fil ...
- Hadoop学习笔记(8) ——实战 做个倒排索引
Hadoop学习笔记(8) ——实战 做个倒排索引 倒排索引是文档检索系统中最常用数据结构.根据单词反过来查在文档中出现的频率,而不是根据文档来,所以称倒排索引(Inverted Index).结构如 ...
- Hadoop案例(四)倒排索引(多job串联)与全局计数器
一. 倒排索引(多job串联) 1. 需求分析 有大量的文本(文档.网页),需要建立搜索索引 xyg pingping xyg ss xyg ss a.txt xyg pingping xyg pin ...
- hadoop学习第三天-MapReduce介绍&&WordCount示例&&倒排索引示例
一.MapReduce介绍 (最好以下面的两个示例来理解原理) 1. MapReduce的基本思想 Map-reduce的思想就是“分而治之” Map Mapper负责“分”,即把复杂的任务分解为若干 ...
- Hadoop实战-MapReduce之倒排索引(八)
倒排索引 (就是key和Value对调的显示结果) 一.需求:下面是用户播放音乐记录,统计歌曲被哪些用户播放过 tom LittleApple jack YesterdayO ...
- Hadoop MapReduce编程 API入门系列之倒排索引(二十四)
不多说,直接上代码. 2016-12-12 21:54:04,509 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JV ...
随机推荐
- STL基础复习
stl容器:vector,deque,list,map/multimap,set 特殊容器:stack,queue,priority_queue 通用操作 size() 返回当前容器元素数量 emp ...
- spring :Log4j各级别日志重复打印
使用filter进行日志过滤 这个其实是Log4j自带的方案,也是推荐方案,不知道为什么网上的资料却很少提到这点. 把log4j.properties配置文件修改成如下: #root日志 log4j. ...
- after及before伪元素及解决父元素塌陷的几种方法
一.伪类和伪元素 CSS中伪类和伪元素有很多,也很好用!如果熟练使用的话可以解决很多问题 首先明白什么是伪类:伪类是基于当前元素的状态,而不是元素的id class等静态标志,它是动态变化的,它会在一 ...
- CF Good Bye 2018
前言:这次比赛爆炸,比赛时各种想多,导致写到\(D\)题时思路已经乱了,肝了\(1\)个多小时都没肝出来,\(B\)题中途因为没开\(long\ long\)又被\(HACK\)了..\(C\)题因为 ...
- Ax2009中使用CLR发送邮件
由于Ax2009系统方法SysMailer 发送中文的时候会乱码,一直找不到原因,用.NEt Framwork的类库可以解决中文乱码的问题.static void CKT_DotNetMail(Arg ...
- form表单上传图片文件
import os def upload(request): if request.method == 'GET': img_list = models.Img.objects.all() retur ...
- Python之路(第三十五篇) 并发编程:操作系统的发展史、操作系统的作用
一.操作系统发展史 第一阶段:手工操作 —— 真空管和穿孔卡片 第一代之前人类是想用机械取代人力,第一代计算机的产生是计算机由机械时代进入电子时代的标志,从Babbage失败之后一直到第二次世界大 ...
- 4-3 重构发送post请求
当创建好一个post请求后 怎么测试呢?
- 浅析b-树 b+树 以及Mysql的Innodb,Myisam引擎
B-树性质 B-树可以看作是对2-3查找树的一种扩展,即他允许每个节点有M-1个子节点. 1根节点至少有两个子节点 2每个节点有M-1个key,并且以升序排列 3位于M-1和M key的子节点的值位于 ...
- Object.defineProperty(obj,prop,descriptor)使用
初步实现了数据自动映射到html中,动态修改对象数据也很自动更新到html.提供addProps方法-添加新增属性并初始化自动监听代码如下: 1.abserve.js:包含数据监听实现.类似jquer ...