一道比较好的树Hash的题目,提供一种不一样的Hash方法。

首先无根树的同构判断一般的做法只有树Hash,所以不会的同学可以做了Luogu P5043 【模板】树同构([BJOI2015]树的同构)再来。

首先我们直接考虑一种朴素的想法,暴力求出\(A\)树中以每一个点为根时的Hash值

然后扔到一个set(你要再写个Hash也没事)里,再在\(B\)树中枚举叶子节点,判断去掉这个叶子节点后的Hash值是否在set里即可。

发现这样算法的复杂度瓶颈在求\(A\)树Hash值时的\(O(n^2)\),那么考虑优化。

由于树Hash的原理就是不要让节点编号去影响Hash值,所以可行的Hash方式不止一种。

那么我们考虑一下用异或+子树大小的方式结合Hash的进制规则来做。

具体的说就是定义Hash值\(H_i=\bigoplus_{j\in son_i}H_j \times seed+size_j\),其中\(\bigoplus\)表示异或和。

那么我们只要先求出以某个点为根时的Hash值,然后在递推到每一个点为根的情况即可,这个直接用异或的性质异或回去抵消即可。

那么问题解决,复杂度为\(O(n\log n)\)(别忘了set的复杂度),如果用Hash代替的花是\(O(n)\)的。

CODE

#include<cstdio>
#include<cctype>
#include<set>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
typedef unsigned long long ull;
const int N=100005; const ull seed=1e9+7;
int n; set <ull> s;
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
char Fin[S],*A,*B;
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
#undef tc
}F;
inline ull updata(CI x,CI y)
{
return x*seed+y;
}
class Tree_Hash_Solver
{
private:
struct edge
{
int to,nxt;
}e[N<<1]; int head[N],cnt,deg[N],size[N],g[N],x,y;
public:
int n,f[N]; //g only in subtree,f include all tree
inline void add(CI x,CI y)
{
e[++cnt]=(edge){y,head[x]}; head[x]=cnt; ++deg[x];
}
inline void init(void)
{
for (RI i=1;i<n;++i) F.read(x),F.read(y),add(x,y),add(y,x);
}
#define to e[i].to
inline void DFS1(CI now,CI fa)
{
size[now]=g[now]=1; for (RI i=head[now];i;i=e[i].nxt)
if (to!=fa) DFS1(to,now),size[now]+=size[to],g[now]^=updata(g[to],size[to]);
}
inline void DFS2(CI now,CI fa)
{
if (!fa) f[now]=g[now]; else f[now]=g[now]^updata(f[fa]^updata(g[now],size[now]),n-size[now]);
for (RI i=head[now];i;i=e[i].nxt) if (to!=fa) DFS2(to,now);
}
#undef to
inline bool isleaf(CI now)
{
return deg[now]==1;
}
inline bool check(CI now)
{
return s.count(f[e[head[now]].to]^updata(g[now],1));
}
}A,B;
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
RI i; for (F.read(n),A.n=n,A.init(),A.DFS1(1,0),A.DFS2(1,0),i=1;i<=n;++i) s.insert(A.f[i]);
for (B.n=n+1,B.init(),i=1;i<=B.n;++i) if (!B.isleaf(i)) { B.DFS1(i,0); B.DFS2(i,0); break; }
for (i=1;i<=B.n;++i) if (B.isleaf(i)&&B.check(i)) return printf("%d",i),0; return 0;
}

Luogu P4323 [JSOI2016]独特的树叶的更多相关文章

  1. Luogu 4323 [JSOI2016]独特的树叶

    新技能get 树哈希,考虑到两棵树相同的条件,把每一个结点的哈希值和树的siz写进哈希值里去. 做出A树每一个结点为根时的树的哈希值丢进set中,然后暴力枚举B树中度数为1的点,求出删掉这个点之后的哈 ...

  2. P4323 [JSOI2016]独特的树叶(树哈希)

    传送门 树哈希?->这里 反正大概就是乱搞--的吧-- //minamoto #include<bits/stdc++.h> #define R register #define l ...

  3. BZOJ4754 & 洛谷4323 & LOJ2072:[JSOI2016]独特的树叶——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4754 https://www.luogu.org/problemnew/show/P4323 ht ...

  4. BZOJ 4754 [JSOI2016]独特的树叶 | 树哈希判同构

    题目链接 这道题是一道判断无根树同构的模板题,判断同构主要的思路就是哈希. 一遇到哈希题,一百个人能有一百零一种哈希方式,这篇题解随便选用了一种--类似杨弋<Hash在信息学竞赛中的一类应用&g ...

  5. bzoj4754[JSOI2016]独特的树叶

    这个题....别人写得怎么都....那么短啊? 我怎么....WA了好几次啊....怎么去loj扒了数据才调出来啊? 这个算法...怎么我还是不知道对不对啊 怎么回事啊怎么回事啊怎么回事啊? 请无视上 ...

  6. BZOJ4754 JSOI2016独特的树叶(哈希)

    判断两棵无根树是否同构只需要把重心提作根哈希即可.由于只添加了一个叶子,重心的位置几乎不发生偏移,所以直接把两棵树的重心提起来,逐层找哈希值不同且对应的两子树即可.被一个普及组子问题卡一年. #inc ...

  7. [JSOI2016]独特的树叶

    https://zybuluo.com/ysner/note/1177340 题面 有一颗大小为\(n\)的树\(A\),现加上一个节点并打乱编号,形成树\(B\),询问加上的节点最后编号是多少? \ ...

  8. bzoj 4754: [Jsoi2016]独特的树叶

    不得不说这是神题. %%%   http://blog.csdn.net/samjia2000/article/details/51762811 #include <cstdio> #in ...

  9. 【BZOJ4754】独特的树叶(哈希)

    [BZOJ4754]独特的树叶(哈希) 题面 BZOJ 给定一个\(n\)个节点的树A和一个\(n+1\)个节点的树\(B\) 求\(B\)的一个编号最小的节点,使得删去这个节点后\(A,B\)同构 ...

随机推荐

  1. 2059-authentication plugin 'caching_sha2_password"cnnot bt loaded :mysql8.0数据库链接不上:

    问题:最近数据库出了问题,就重新安装了数据库8.0,8.0建立数据库时出现问题,错误提示: 2059-authentication plugin 'caching_sha2_password" ...

  2. eclipse maven web

    在eclipse中用maven创建web项目. 环境配置 C:\Users\xxx>java -versionjava version "1.8.0_121"Java(TM) ...

  3. Vue2 学习笔记5

    文中例子代码请参考github watch属性的使用 考虑一个问题:想要实现 名 和 姓 两个文本框的内容改变,则全名的文本框中的值也跟着改变:(用以前的知识如何实现???) 监听data中属性的改变 ...

  4. Lua不显示小数点0的部分

    我的环境:Unity3D 5.3.7p4 XLua版本v2.1.6 基于Lua5.3 (https://github.com/Tencent/xLua) 在Lua中数字不区分整型或浮点型,所有都是nu ...

  5. jvm结构

    JVM的基本结构及其各部分详解(一)  https://www.cnblogs.com/zwbg/p/6194470.html JVM的基本结构及其各部分详解(二) https://www.cnblo ...

  6. MySQL 系列(四) 主从复制、读写分离、模拟宕机、备份恢复方案生产环境实战

    本章内容: 主从复制 简介原理 备份主库及恢复从库,配置从库生效 读写分离 如果主宕机了,怎么办? 双主的情况 MySQL 备份及恢复方案 备份单个及多个数据库 mysqldump 的常用参数 如何增 ...

  7. AOP的底层实现:JDK动态代理与Cglib动态代理

    转载自 https://www.cnblogs.com/ltfxy/p/9872870.html SpringAOP底层的实现原理: JDK动态代理:只能对实现了接口的类产生代理.(实现接口默认JDK ...

  8. SpringCloud之初识Zuul(网关)---动态路由,权限验证

    通过前面的学习,使用Spring Cloud实现微服务的架构基本成型,大致是这样的: 我们使用Spring Cloud Netflix中的Eureka实现了服务注册中心以及服务注册与发现:而服务间通过 ...

  9. python 约束与异常处理

    一.类的约束 1.约束就是对类的约束.其实就是父类对子类进行约束,子类必须要写xxx方法. 2.抽象:就是当我们没法对一个功能或者一个属性进行精确的表述,一般都采用抽象的方式给出. (1)抽象类的书写 ...

  10. nginx: [emerg] unknown directive "stub_status" in /usr/local/openresty/nginx/conf/conf.d/ngx_metric.conf:19

    问题分析 Nginx没有添加modules/ngx_http_stub_status_module.o模块. 问题解决 没有安装的话,可以在tar包安装编译的时候添加如下参数: # ./configu ...