题意:一个n*m的矩阵(n<=m<=250),要求选出n个数(每行,每列最多选一个),求第k大数的最小值。

首先第k大的意思是从大到小的第k个数(我读错了,WA了一次还以为算法不对...)

然后第k大最小不好直接做.考虑二分答案.

二分答案的单调性在于,如果不能选出n-k+1个小于等于i的不同行列的数,那么最终的答案大于i,否则最终的答案小于等于i。

判定的时候将每一行看作一个点,每一列也看作一个点,每个位置A[i][j](A[i][j]小于等于判定的答案ans)代表一条第i行和第j行之间的边。(这种二维矩阵每一行怎么样怎么样每一列怎么样怎么样的题常常可以转化成二分图去考虑)。

最后二分出一个i,使得我们可以选出n-k+1个小于等于i的数但不能选出n-k+1个小于等于(i-1)的数,这个i就是答案.

这里有一点问题,就是我们虽然可以选出n-k+1个小于等于i的数,但似乎并没有保证可以选出k-1个大于i的数.因此我在读错题WA了一发之后开始怀疑算法正确性。

所幸,随便选出剩下k-1个数一定可以保证第k大的数字是i.

证明如下:

首先,我们选出所有数字之后,不可能选出n-k+1个小于等于(i-1)的数(否则与二分的结果相违背)。也就是说,我们在选出n-k+1个小于等于i的数之后,随便选剩下的k-1个数字,最终选出的全部数字中至少有k个大于等于i.

于是我们有两个条件:全部数字中,至少有n-k+1个小于等于i(二分条件保证可以先选出n-k+1个这样的数,这个条件等价于从小到大第n-k+1个数也就是从大到小第k个数一定小于等于i),至少有k个大于等于i(也就是说从大到小第k个数一定大于等于i),那么第k大的数既小于等于i又大于等于i,所以第k大的数只能是i,这样就没有问题了。

(似乎别人的题解都觉得这是显然的)

(写了个dinic结果比别人的匈牙利慢好多)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
int n,m,k;
int a[maxn][maxn];
struct edge{
int to,next,w;
}lst[maxn*maxn*];int len=,first[maxn*],_first[maxn*];
void addedge(int a,int b,int w){
lst[len].to=b;lst[len].next=first[a];lst[len].w=w;first[a]=len++;
lst[len].to=a;lst[len].next=first[b];lst[len].w=;first[b]=len++;
}
int s,t;
int q[maxn*],vis[maxn*],T,dis[maxn*],head,tail;
bool bfs(){
vis[s]=++T;head=tail=;
q[tail++]=s;dis[s]=;
while(head!=tail){
int x=q[head++];
for(int pt=first[x];pt!=-;pt=lst[pt].next){
if(lst[pt].w&&vis[lst[pt].to]!=T){
vis[lst[pt].to]=T;dis[lst[pt].to]=dis[x]+;
q[tail++]=lst[pt].to;
}
}
}
if(vis[t]==T)memcpy(_first,first,sizeof(first));
return vis[t]==T;
}
int dfs(int x,int lim){
if(x==t)return lim;
int flow=,a;
for(int pt=_first[x];pt!=-;pt=lst[pt].next){
_first[x]=pt;
if(lst[pt].w&&dis[lst[pt].to]==dis[x]+&&(a=dfs(lst[pt].to,min(lst[pt].w,lim-flow)))){
lst[pt].w-=a;lst[pt^].w+=a;flow+=a;
if(flow==lim)break;
}
}
return flow;
}
int dinic(){
int ans=,x;
while(bfs())
while(x=dfs(s,0x7f7f7f7f))ans+=x;
return ans;
}
bool check(int ans){
memset(first,-,sizeof(first));len=;
s=;t=n+m+;
for(int i=;i<=n;++i){
addedge(s,i,);
}
for(int i=;i<=m;++i){
addedge(n+i,t,);
}
for(int i=;i<=n;++i){
for(int j=;j<=m;++j){
if(a[i][j]<=ans)addedge(i,n+j,);
}
}
return dinic()>=k;
}
int main(){
scanf("%d%d%d",&n,&m,&k);
k=n-k+;
for(int i=;i<=n;++i){
for(int j=;j<=m;++j){
scanf("%d",&a[i][j]);
}
}
int l=,r=;
while(l<=r){
int mid=(l+r)>>;
if(check(mid)){
r=mid-;
}else{
l=mid+;
}
}
printf("%d\n",r+);
return ;
}

bzoj4443[SCOI2015]小凸玩矩阵的更多相关文章

  1. 2018.06.30 BZOJ4443: [Scoi2015]小凸玩矩阵(二分加二分图匹配)

    4443: [Scoi2015]小凸玩矩阵 Time Limit: 10 Sec Memory Limit: 128 MB Description 小凸和小方是好朋友,小方给小凸一个N*M(N< ...

  2. bzoj4443 SCOI2015 小凸玩矩阵 matrix

    传送门:bzoj4443 题解 很水的一道网络流,显然可以二分答案,然后我们希望第\(k\)大尽量小,那么对于一个\(mid\),我们应尽量选择更小的,然后跑二分图最大匹配来验证. code

  3. 【BZOJ4443】[Scoi2015]小凸玩矩阵 二分+二分图最大匹配

    [BZOJ4443][Scoi2015]小凸玩矩阵 Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或 ...

  4. BZOJ_4443_[Scoi2015]小凸玩矩阵_二分+二分图匹配

    BZOJ_4443_[Scoi2015]小凸玩矩阵_二分+二分图匹配 Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个 ...

  5. 【BZOJ4443】小凸玩矩阵(二分答案,二分图匹配)

    [BZOJ4443]小凸玩矩阵(二分答案,二分图匹配) 题面 BZOJ Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两 ...

  6. BZOJ 4443: [Scoi2015]小凸玩矩阵 最大流

    4443: [Scoi2015]小凸玩矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4443 Description 小凸和小方是好 ...

  7. bzoj 4443 [Scoi2015]小凸玩矩阵 网络流,二分

    [Scoi2015]小凸玩矩阵 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1564  Solved: 734[Submit][Status][Di ...

  8. 【bzoj4443】【[Scoi2015]小凸玩矩阵】二分+二分图最大匹配

    (上不了p站我要死了,侵权度娘背锅) Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或同一列,现小凸 ...

  9. [bzoj4443] [loj#2006] [洛谷P4251] [Scoi2015]小凸玩矩阵

    Description 小凸和小方是好朋友,小方给小凸一个 \(N \times M\)( \(N \leq M\) )的矩阵 \(A\) ,要求小秃从其中选出 \(N\) 个数,其中任意两个数字不能 ...

随机推荐

  1. bootstrap(关于栅格布局)

    栅格系统是通过行(.row)与列(column)的组合一起来创建页面布局的,所以只有列(column)可以作为行(row)的直接子元素,我们所要写的内容可以放在列里(column),不过在行的外层还需 ...

  2. Three.js制作360度全景图

    这是个基于three.js的插件,预览地址:戳这里 使用方法: 1.这个插件的用法很简单,引入如下2个js <script src="js/three.min.js"> ...

  3. observejs改善组件编程体验

    传送门 observejs:https://github.com/kmdjs/observejs 本文演示:http://kmdjs.github.io/observejs/list/ 本文代码:ht ...

  4. Xcode8+和iOS10+使用Masonry自动计算行高

    说起tableView的自动计算行高,真的是不想再提了,写了不知道几百遍了.可就是这麽一个小玩意儿,把我给难的不行不行的,眼看都要没头发了. 1.设置tableView的预估行高和行高为自动计算 // ...

  5. android MD5加密

    public class MD5Uutils {    //MD5加密,32位    public static String MD5(String str) {        MessageDige ...

  6. [JAVA]定时任务之-Quartz使用篇

    Quartz是OpenSymphony开源组织在Job scheduling领域又一个开源项目,它可以与J2EE与J2SE应用程序相结合也可以单独使用.Quartz可以用来创建简单或为运行十个,百个, ...

  7. MVC下压缩输入的HTML内容

    在MVC下如何压缩输出的HTML代码,替换HTML代码中的空白,换行符等字符? 1.首先要了解MVC是如何输出HTML代码到客户端的,先了解下Controller这个类,里面有很多方法,我们需要的主要 ...

  8. Percona TokuDB

    Percona TokuDB Percona TokuDB 1.     TokuDB说明 2.     TokuDB安装 3.     使用TokuDB 3.1 快速插入和富索引 3.2 聚集sec ...

  9. JavaScript & PHP模仿C#中string.format效果

    1.JavaScript function stringformat() { var args = Array.prototype.slice.call(arguments); if (args.le ...

  10. 搭建SVN服务器

    系统环境:CentOS 6.6   首先查看服务器上是否已安装了svn # rpm -qa subversion 如果没有安装,则执行此命令 # yum list subversion         ...