Problem UVA1616-Caravan Robbers

Accept: 96  Submit: 946
Time Limit: 3000 mSec

Problem Description

Long long ago in a far far away land there were two great cities and The Great Caravan Road between them. Many robber gangs “worked” on that road. By an old custom the i-th band robbed all merchants that dared to travel between ai and bi miles of The Great Caravan Road. The custom was old, but a clever one, as there were no two distinct i and j such that ai ≤ aj and bj ≤ bi. Still when intervals controlled by two gangs intersected, bloody fights erupted occasionally. Gang leaders decided to end those wars. They decided to assign each gang a new interval such that all new intervals do not intersect (to avoid bloodshed), for each gang their new interval is subinterval of the old one (to respect the old custom), and all new intervals are of equal length (to keep things fair). You are hired to compute the maximal possible length of an interval that each gang would control after redistribution.

Input

The input will contain several test cases, each of them as described below. The first line contains n (1 ≤ n ≤ 100000) — the number of gangs. Each of the next n lines contains information about one of the gangs — two integer numbers ai and bi (0 ≤ ai < bi ≤ 1000000). Data provided in the input file conforms to the conditions laid out in the problem statement.

 Output

For each test case, write to the output on a line by itself. Output the maximal possible length of an interval in miles as an irreducible fraction p/q.
Note for the sample:
In the above example, one possible set of new intervals that each gang would control after redistribution is given below.
• The first gang would control an interval between 7/2 = 3.5 and 12/2 = 6 miles which has length of 5/2 and is a subinterval of its original (2, 6).
• The second gang would control an interval between 2/2 = 1 and 7/2 = 3.5 miles which has length of 5/2 and is a subinterval of its original (1, 4).
• The third gang would control an interval between 16/2 = 8 and 21/2 = 10.5 miles which has length of 5/2 and is a subinterval of its original (8, 12).
 

 Sample Input

3
2 6
1 4
8 12
 

Sample Output

5/2

题解:最大化最小值,这个题二分答案的感觉是十分明显的,操作也很简单,就是精度要求比较高,关键一步在于最后的分数化小数,实在不会,参考了别人的代码,感觉很奇怪,主体操作能理解,就是枚举分母,计算分子,看该分数与答案的绝对误差,如果比当前解小,那就更新当前解,难以理解的地方在于分母枚举上限的选取,居然是线段的个数???(恳请大佬指教orz)

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn =  + ;
const double eps = 1e-; int n; struct Inter {
int le, ri;
Inter(int le = , int ri = ) : le(le), ri(ri) {}
bool operator < (const Inter &a)const {
return le < a.le;
}
}inter[maxn]; bool Judge(double len) {
double pos = inter[].le + len;
if (pos > inter[].ri + eps) return false;
for (int i = ; i < n; i++) {
pos = pos > inter[i].le ? pos : inter[i].le;
pos += len;
if (pos > inter[i].ri + eps) return false;
}
return true;
} int main()
{
//freopen("input.txt", "r", stdin);
while (~scanf("%d", &n)) {
for (int i = ; i < n; i++) {
scanf("%d%d", &inter[i].le, &inter[i].ri);
} sort(inter, inter + n); double l = 0.0, r = 1000000.0;
double ans = 0.0;
while (l + eps < r) {
double mid = (l + r) / ;
if (Judge(mid)) {
ans = l = mid;
}
else r = mid;
} int rp = , rq = ;
for (int p, q = ; q <= n; q++) {
p = round(ans*q);
if (fabs(1.0*p / q - ans) < fabs(1.0*rp / rq - ans)) {
rp = p, rq = q;
}
} printf("%d/%d\n", rp, rq);
}
return ;
}

UVA1616-Caravan Robbers(二分)的更多相关文章

  1. UVa 1616 Caravan Robbers (二分+贪心)

    题意:给定 n 个区间,然后把它们变成等长的,并且不相交,问最大长度. 析:首先是二分最大长度,这个地方精度卡的太厉害了,都卡到1e-9了,平时一般的1e-8就行,二分后判断是不是满足不相交,找出最长 ...

  2. UVA 1616 Caravan Robbers 商队抢劫者(二分)

    x越大越难满足条件,二分,每次贪心的选区间判断是否合法.此题精度要求很高需要用long double,结果要输出分数,那么就枚举一下分母,然后求出分子,在判断一下和原来的数的误差. #include& ...

  3. UVa - 1616 - Caravan Robbers

    二分找到最大长度,最后输出的时候转化成分数,比较有技巧性. AC代码: #include <iostream> #include <cstdio> #include <c ...

  4. 【习题 8-14 UVA - 1616】Caravan Robbers

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 二分长度. 显然长度越长.就越不可能. 二分的时候.可以不用管精度. 直接指定一个二分次数的上限就好. 判断长度是否可行.直接用贪心 ...

  5. NEERC2012

    NEERC2012 A - Addictive Bubbles 题目描述:有一个\(n \times m\)的棋盘,还有不同颜色的棋子若干个,每次可以消去一个同种颜色的联通块,得到的分数为联通块中的棋 ...

  6. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  7. BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3352  Solved: 919[Submit][Stat ...

  8. 整体二分QAQ

    POJ 2104 K-th Number 时空隧道 题意: 给出一个序列,每次查询区间第k小 分析: 整体二分入门题? 代码: #include<algorithm> #include&l ...

  9. [bzoj2653][middle] (二分 + 主席树)

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b ...

随机推荐

  1. 设计模式—模板方法的C++实现

    这是Bwar在2009年写的设计模式C++实现,代码均可编译可运行,一直存在自己的电脑里,曾经在团队技术分享中分享过,现搬到线上来. 1. 模板方法简述 1.1 目的 定义一个操作中的算法骨架,而将一 ...

  2. JavaScript有这几种测试分类

    译者按: 也许你讨厌测试,但是你不得不面对它,所以至少区分一下单元测试.集成测试与功能测试?对吧… 原文: What are Unit Testing, Integration Testing and ...

  3. 为链表数据结构实现iterator接口

    iterator作用 为所有的数据结构提供统一的访问方式. 接口对象 接口对象一共有3个方法,next()方法.return()方法.throw()方法. next() 必填 用于for..of迭代. ...

  4. 亲测:LNMP环境下,解决项目缓冲慢、502以及配置https的问题

    在做的项目在nginx下访问缓冲时间过长,明显比apache下访问蛮11倍有余, 解决办法: 1增加nginx的upstream,其中upstream中为php-cgi的地址: 2利用nginx作为反 ...

  5. #WEB安全基础 : HTML/CSS | 0x4HTML模块化

    想让你的网页变得整洁吗?找我就对了,当然你会认识几个新元素,和它们交朋友吧! 我帮你联系一下这几个新元素,这样交朋友就变得简单了 images里放着图片   以下是index.html的代码 < ...

  6. 带你了解源码中的 ThreadLocal

    本篇文章已授权微信公众号 guolin_blog (郭霖)独家发布 这次想来讲讲 ThreadLocal 这个很神奇的东西,最开始接触到这个是看了主席的<开发艺术探索>,后来是在研究 Vi ...

  7. 小tips:JS之break,continue和return这三个语句的用法

    break语句 break语句会使运行的程序立刻退出包含在最内层的循环或者退出一个switch语句.由于它是用来退出循环或者switch语句,所以只有当它出现在这些语句时,这种形式的break语句才是 ...

  8. 浅谈Android 混淆和加固

    混淆: 针对项目代码,代码混淆通常将代码中的各种元素(变量.函数.类名等)改为无意义的名字,使得阅读的人无法通过名称猜测其用途,增大反编译者的理解难度. 虽然代码混淆可以提高反编译的门槛,但是对开发者 ...

  9. Android为TV端助力 计算每个目录剩余空间丶总空间以及SD卡剩余空间

    ublic class MemorySpaceCheck { /** * 计算剩余空间 * @param path * @return */ public static String getAvail ...

  10. mysql左连接

    举个例子说明: select d.id, d.uid,d.username,d.dateline, d.message,d.replynum, c.picid, c.filename from doi ...