CF 331 E. Biologist

题目描述

题目大意:有\(n\)个点,初始时每个点为黑色或者白色,你可以花费\(v_i\)的代价将一个点反色。然后你有许多计划,每个计划要求一个点集中的所有点为同种颜色。满足了一个计划就可以得到\(w_i\)相应的价值,某些计划如果没有被满足,还会付出\(g\)的代价。

感觉这个题有点最大权闭合子图的样子,\(g\)的额外代价也很鸡肋。

然后我们考虑这道题的反色操作。如果第\(i\)个点本来是白色的,那么我们连\((S,i,v_i)\),否则连\((i,T,v_i)\)。如果将这种边割了,就代表将这个点反色。

然后对于第\(i\)个计划,如果他要求的点集为白色,但是点集中的点\(x\)为黑色,则我们连\((i+n,x,\infty)\);反之连\((x,i+n,\infty)\)。然后对于白色计划连\((S,i+n,w_i+[i==friend]*g)\);对于黑色计划连\((i+n,T,w_i+[i==friend]*g)\)。

如果\(S\to T\)有路径就代表有冲突了。

然后如果有不同颜色的计划的点集中有交,那么他们不可能同时选,于是连他们之间连一条\(\infty\)的边。然后我们可以优化一下这些边。

假设一个白色计划,它的点集中有白色点,那么我们也连\((i+n,x,\infty)\),黑色计划同理。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 15005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n,m,g;
int col[N];
int v[N],fri[N],w[N];
int sex[N];
struct road {
int to,next;
int flow;
}s[N<<3];
int h[N],cnt=1;
int cur[N];
void add(int i,int j,int f) {
s[++cnt]=(road) {j,h[i],f};h[i]=cnt;
s[++cnt]=(road) {i,h[j],0};h[j]=cnt;
} int S,T;
int dis[N];
queue<int>q;
bool bfs() {
memset(dis,0x3f,sizeof(dis));
q.push(S);
dis[S]=0;
while(!q.empty()) {
int v=q.front();
q.pop();
for(int i=h[v];i;i=s[i].next) {
int to=s[i].to;
if(s[i].flow&&dis[to]>dis[v]+1) {
dis[to]=dis[v]+1;
q.push(to);
}
}
}
return dis[T]<1e9;
} int dfs(int v,int maxf) {
if(v==T) return maxf;
int ret=0;
for(int &i=cur[v];i;i=s[i].next) {
int to=s[i].to;
if(s[i].flow&&dis[to]==dis[v]+1) {
int dlt=dfs(to,min(maxf,s[i].flow));
s[i].flow-=dlt;
s[i^1].flow+=dlt;
ret+=dlt;
maxf-=dlt;
if(!maxf) return ret;
}
}
return ret;
} int dinic() {
int ans=0;
while(bfs()) {
while(1) {
memcpy(cur,h,sizeof(h));
int tem=dfs(S,1e9);
if(!tem) break;
ans+=tem;
}
}
return ans;
}
int sum=0;
int main() {
n=Get(),m=Get(),g=Get();
T=n+m+1;
for(int i=1;i<=n;i++) col[i]=Get();
for(int i=1;i<=n;i++) {
v[i]=Get();
if(!col[i]) add(S,i,v[i]);
else add(i,T,v[i]);
}
for(int i=1;i<=m;i++) {
sex[i]=Get(),w[i]=Get();
sum+=w[i];
int k=Get();
while(k--) {
int a=Get();
if(sex[i]) add(a,i+n,1e9);
else add(i+n,a,1e9);
}
fri[i]=Get();
}
for(int i=1;i<=m;i++) {
if(sex[i]) add(i+n,T,w[i]+fri[i]*g);
else add(S,i+n,w[i]+fri[i]*g);
}
cout<<sum-dinic();
return 0;
}

CF 331 E. Biologist的更多相关文章

  1. 【CodeForces】【311E】Biologist

    网络流/最大权闭合图 题目:http://codeforces.com/problemset/problem/311/E 嗯这是最大权闭合图中很棒的一道题了- 能够1A真是开心-也是我A掉的第一道E题 ...

  2. CF 987

    毒瘤啊啊啊啊啊 虽然排名还不错,331,但是B我没做出来...... 这是战绩: 可以看到我大发神威势如破竹的A了CDE,但是B把我卡了三次...不然我就能进前300了(还是很水). 逐一分析题目: ...

  3. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  4. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  5. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  6. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  7. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

  8. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  9. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

随机推荐

  1. 微信小程序实现支付功能

    小程序支付,没有封装支付代码:直接上一段可用的流程代码吧:微信小程序支付官网文档有详细的说明,这里我就不再赘述啦:客户端js: wx.request({ url:'https://www.xxxx.c ...

  2. (5)Microsoft office Word 2013版本操作入门_标尺

    1.标尺 :左缩进,右缩进,悬挂缩进,首行缩进,阴影部分 可以左右拖拽调整边缘. 1.1  左缩进:默认缩进所在的段落,要缩进多段则需要多段落选中, 后拖动左缩进. 1.2 首行缩进缩进或者突出所选的 ...

  3. python面向对象学习(四)继承

    目录 1. 单继承 1.1 继承的概念.语法和特点 1.2 方法的重写 1.3 父类的 私有属性 和 私有方法 2. 多继承 2.1 多继承的使用注意事项 2.2 新式类与旧式(经典)类 1. 单继承 ...

  4. Add Again(重复元素排序) UVA11076

    Add Again Summation of sequence of integers is always a common problem in Computer Science. Rather t ...

  5. angularjs+webapi2 跨域Basic 认证授权(一)

    如今的app,利用各种前端框架结合html5的混合开发模式已然盛极一时.其中ionic+angularjs更是如日中天.这种模式利用angularjs $http 请求数据api 以达到前后端分离深得 ...

  6. laravel表单验证

    效果展示:         代码 实现: 后台: use Validator; public function login() { if($input = Input::all()){ //验证提交的 ...

  7. nodeJs express mongodb 建站(linux 版)

    一.环境安装 1.安装node wget http://nodejs.org/dist/v0.12.2/node-v0.12.2-linux-x64.tar.gz //下载tar xvf node-v ...

  8. 洛谷P2234 [HNOI2002]营业额统计

    题目描述 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额.分析营业情况是 ...

  9. Python高级特性:切片

    切片的目的是实现取一个list或tuple的部分元素 学习自廖雪峰,个人理解如下: 取列表L的前三个元素 >>> L = ['Michael', 'Sarah', 'Tracy', ...

  10. H264-YUV通过RTP接收视频流ffmpeg解码SDL实时播放

    写在前面的话 写一个简单的播放器,通过RTP接收视频流,进行实时播放.最初,使用ffplay或者vlc接收按照SDP协议文件可以播放视频,但是视频中断后重启,不能正确的解包,时常会出现如下的错误信息. ...