LOJ-10092(最大半连通子图)
题目连通:传送门
思路:
题目定义很清晰,然后就不会了QAQ……
后来看了书,先缩点,然后再用拓扑排序找到最长的链子的节点数(因为缩点后所有点都是一个强连通分量,所以找最长的链子就是最大限度包含
点的半连通子图)然后用dp求出由多少个长度相同的链子(e数组记录从开始到i节点所有的方案数,dis数组表示链子的节点个数,每次找到更长的链子时就更新数组,然后最后求出多少个满足最长链子的方案)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 1e6+;
int head[maxn],next[maxn],ver[maxn],tot;
int num[maxn],low[maxn],tim,co[maxn],si[maxn],col;
int st[maxn],que[maxn],top,t,w;
int du[maxn],e[maxn],ans,anss,m,n,MOD;
int x[maxn],y[maxn],nu[maxn],dis[maxn];
int MIN(int a,int b)
{
return a<b?a:b;
}
void addedge(int u,int v)
{
ver[++tot]=v;next[tot]=head[u];head[u]=tot;
}
void Tarjan(int u)
{
low[u]=num[u]=++tim;
st[++top]=u;
for(int i=head[u];i;i=next[i]){
int v=ver[i];
if(!num[v]){
Tarjan(v);
low[u]=MIN(low[u],low[v]);
}
else if(!co[v]) low[u]=MIN(low[u],num[v]);
}
if(num[u]==low[u]){
col++;
si[col]++;
co[u]=col;
while(u!=st[top]){
si[col]++;
co[st[top]]=col;
top--;
}
top--;
}
}
bool cmp(int a,int b)
{
if(x[a]!=x[b]) return x[a]<x[b];
else return y[a]<y[b];
}
void Remove()
{
for(int i=;i<=m;i++){
nu[i]=i;
x[i]=co[x[i]];
y[i]=co[y[i]];
}
sort(nu+,nu++m,cmp);
}
void Build()
{
tot=;
memset(head,,sizeof(head));
for(int i=;i<=m;i++){
int z=nu[i];
if((x[z]!=y[z])&&(x[z]!=x[nu[i-]]||y[z]!=y[nu[i-]]))
addedge(x[z],y[z]),du[y[z]]++;
}
}
void Reset()
{
for(int i=;i<=col;i++)
if(!du[i]){
que[++w]=i;
dis[i]=si[i];
e[i]=;
if(dis[i]>dis[ans]) ans=i;
}
}
void Topo()
{
while(t<w){
int u=que[++t];
for(int i=head[u];i;i=next[i]){
int v=ver[i];
--du[v];
if(dis[v]<dis[u]+si[v]){
dis[v]=dis[u]+si[v];
e[v]=;
if(dis[ans]<dis[v]) ans=v;
}
if(dis[v]==dis[u]+si[v]) e[v]=(e[v]+e[u])%MOD;
if(!du[v]) que[++w]=v;
}
}
}
void ANS()
{
for(int i=;i<=n;i++)
if(dis[i]==dis[ans]) anss=(anss+e[i])%MOD;
}
int main(void)
{
int i,j;
scanf("%d%d%d",&n,&m,&MOD);
for(i=;i<=m;i++){
scanf("%d%d",&x[i],&y[i]);
addedge(x[i],y[i]);
}
for(i=;i<=n;i++)
if(!num[i]) Tarjan(i); Remove();
Build();
Reset();
Topo();
ANS();
printf("%d\n%d",dis[ans],anss);
return ;
}
LOJ-10092(最大半连通子图)的更多相关文章
- 最大半连通子图 bzoj 1093
最大半连通子图 (1.5s 128MB) semi [问题描述] 一个有向图G = (V,E)称为半连通的(Semi-Connected),如果满足:∀ u, v ∈V,满足u->v 或 v - ...
- BZOJ1093 [ZJOI2007]最大半连通子图
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...
- BZOJ 1093 [ZJOI2007] 最大半连通子图(强联通缩点+DP)
题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 ...
- BZOJ1093 最大半连通子图
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...
- BZOJ 1093 [ZJOI2007]最大半连通子图
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1986 Solved: 802[Submit][St ...
- bzoj 1093 [ZJOI2007]最大半连通子图(scc+DP)
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2286 Solved: 897[Submit][St ...
- BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )
WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...
- [BZOJ]1093 最大半连通子图(ZJOI2007)
挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...
- bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
- 【刷题】BZOJ 1093 [ZJOI2007]最大半连通子图
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...
随机推荐
- Ontology理论研究和应用建模
转自:https://www.cnblogs.com/yes-V-can/p/8151275.html 目录 1 关于Ontology 1.1 Ontology的定义 1.2 Ontology的建模元 ...
- 前端笔记-javaScript-3
BOM对象 window对象 所有浏览器都支持 window 对象概念上讲.一个html文档对应一个window对象功能上讲: 控制浏览器窗口的使用上讲: window对象不需要创建对象,直接使用即可 ...
- django 设置session过期时间
session的超时时间设置settings中SESSION_COOKIE_AGE=60*30 30分钟.SESSION_EXPIRE_AT_BROWSER_CLOSE False:会话cookie可 ...
- tensorflow 升级到1.9-rc0,tensorboard 报错:TypeError: GetNext() takes exactly 1 argument (2 given)
Exception in thread Reloader:Traceback (most recent call last): File "/usr/lib/python2.7/threa ...
- 微信小程序---转发分享功能
1. 转发---onShareAppMessage 2.不带参数 //用户点击右上角分享 onShareAppMessage: function (res) { return { title: 'xx ...
- layui xtree 实现一级节点单选 ,子节点复选
在外部定义变量和方法 //定义变量 接收顶级节点的值 var topValue; // 获取顶级节点值的方法 function getParent(value) { var val = project ...
- C#解析JSON字符串总结(转载)
JSON文件读取到内存中就是字符串,.NET操作JSON就是生成与解析JSON字符串. 操作JSON通常有以下几种方式: 1. 原始方式:按照JSON字符串自己来解析. 2. 通用方式[★★★★★]: ...
- html入门第二天。
二·1.图片与多媒体:-------------- img标签(重中之重): 网页中的图片展示就是用的img标签实现,img元素相网页中嵌入一幅图形,行内标签,单标签. 基础语句:<img sr ...
- cdn帮助链接汇集
1. 如何查看节点和站点的流量,负载和连接信息 2. cdnbest常见状态码解释 3. 如何让用户访问走最近最快的线路(分组线路) 4. cdnbest里如何查看网站是否被缓存 5. cdnbest ...
- Arrays和String单元测试-20175218
Arrays和String单元测试 一.题目 在IDEA中以TDD的方式对String类和Arrays类进行学习 测试相关方法的正常,错误和边界情况 String类 charAt split Arra ...