loj#6031. 「雅礼集训 2017 Day1」字符串(SAM 广义SAM 数据分治)
题意
Sol
\(10^5\)次询问每次询问\(10^5\)个区间。。这种题第一感觉就是根号/数据分治的模型。
\(K\)是个定值这个很关键。
考虑\(K\)比较小的情况,可以直接暴力建SAM,\(n^2\)枚举\(w\)的子串算出现次数。询问用个\(n^2\)的vector记录一下每次在vector里二分就好。
\(K\)比较大的情况我没想到什么好的做法,网上的做法复杂度也不是很好。。
然后写了个广义SAM + 暴力跳parent就过了。。
不过这题思想还是很好的
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4e5 + 10, INF = 1e9 + 1, mod = 1e9 + 7;
const double eps = 1e-9, pi = acos(-1);
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, Q, K;
char s[MAXN], w[MAXN];
string q[MAXN];
int l[MAXN], r[MAXN], a[MAXN], b[MAXN], pos[MAXN];
vector<int> line[1001][1001], v[MAXN];
int ch[MAXN][26], siz[MAXN], len[MAXN], fa[MAXN], las = 1, root = 1, tot = 1;
void insert(int x, int opt) {
int now = ++tot, pre = las; las = now; len[now] = len[pre] + 1; siz[now] = opt;
for(; pre && !ch[pre][x]; pre = fa[pre]) ch[pre][x] = now;
if(!pre) fa[now] = root;
else {
int q = ch[pre][x];
if(len[pre] + 1 == len[q]) fa[now] = q;
else {
int nq = ++tot; len[nq] = len[pre] + 1; fa[nq] = fa[q];
memcpy(ch[nq], ch[q], sizeof(ch[q]));
fa[now] = fa[q] = nq;
for(; pre && ch[pre][x] == q; pre = fa[pre]) ch[pre][x] = nq;
}
}
}
void dfs(int x) {
for(auto &to : v[x]) {
dfs(to);
siz[x] += siz[to];
}
}
int Query(vector<int> &q, int a, int b) {
return (upper_bound(q.begin(), q.end(), b) - lower_bound(q.begin(), q.end(), a));
}
LL solve1(int a, int b) {
LL ret = 0;
for(int i = 1; i <= K; i++) {
int now = root;
for(int j = i; j <= K; j++) {
int x = w[j] - 'a'; now = ch[now][x];
if(!now) break;
else ret += 1ll * siz[now] * Query(line[i][j], a, b);
}
}
return ret;
}
void Build() {
for(int i = 1; i <= tot; i++) v[fa[i]].push_back(i);
dfs(root);
}
signed main() {
// freopen("string9.in", "r", stdin); freopen("b.out", "w", stdout);
N = read(); M = read(); Q = read(); K = read();
scanf("%s", s + 1);
for(int i = 1; i <= N; i++) insert(s[i] - 'a', 1);
if(K <= 1000) {
Build();
for(int i = 1; i <= M; i++) l[i] = read() + 1, r[i] = read() + 1, line[l[i]][r[i]].push_back(i);
for(int i = 1; i <= Q; i++) {
scanf("%s", w + 1); int a = read() + 1, b = read() + 1;
cout << solve1(a, b) << '\n';
}
}
else {
for(int i = 1; i <= M; i++) l[i] = read() + 1, r[i] = read() + 1;
for(int i = 1; i <= Q; i++) {
cin >> q[i]; a[i] = read() + 1, b[i] = read() + 1;
las = 1;
for(auto &x : q[i]) insert(x - 'a', 0);
}
Build();
for(int i = 1; i <= Q; i++) {
memset(pos, 0, sizeof(pos));
int now = root;
for(int j = 0; j < q[i].length(); j++) {
int x = q[i][j] - 'a'; now = ch[now][x];
if(!now) break;
else pos[j + 1] = now;
}
LL ans = 0;
for(int j = a[i]; j <= b[i]; j++) {
int cur = pos[r[j]];
while(len[fa[cur]] >= r[j] - l[j] + 1) cur = fa[cur];//这里可以卡掉
ans += siz[cur];
}
cout << ans << '\n';
}
}
return 0;
}
loj#6031. 「雅礼集训 2017 Day1」字符串(SAM 广义SAM 数据分治)的更多相关文章
- [LOJ 6031]「雅礼集训 2017 Day1」字符串
[LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...
- loj 6031「雅礼集训 2017 Day1」字符串
loj 注意到每次询问串长度都是给定的,并且询问串长\(k*\)询问次数\(q<10^5\),所以这里面一个东西大的时候另一个东西就小,那么考虑对较小的下功夫 如果\(k\le \sqrt{n} ...
- [LOJ 6030]「雅礼集训 2017 Day1」矩阵
[LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...
- [LOJ 6029]「雅礼集训 2017 Day1」市场
[LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...
- loj#6030. 「雅礼集训 2017 Day1」矩阵(贪心 构造)
题意 链接 Sol 自己都不知道自己怎么做出来的系列 不难观察出几个性质: 最优策略一定是先把某一行弄黑,然后再用这一行去覆盖不是全黑的列 无解当且仅当无黑色.否则第一个黑色所在的行\(i\)可以先把 ...
- loj#6029. 「雅礼集训 2017 Day1」市场(线段树)
题意 链接 Sol 势能分析. 除法是不能打标记的,所以只能暴力递归.这里我们加一个剪枝:如果区间内最大最小值的改变量都相同的话,就变成区间减. 这样复杂度是\((n + mlogn) logV\)的 ...
- LOJ #6029. 「雅礼集训 2017 Day1」市场 线段树维护区间除法
题目描述 从前有一个贸易市场,在一位执政官到来之前都是非常繁荣的,自从他来了之后,发布了一系列奇怪的政令,导致贸易市场的衰落. 有 \(n\) 个商贩,从\(0 \sim n - 1\) 编号,每个商 ...
- 「雅礼集训 2017 Day1」字符串 SAM、根号分治
LOJ 注意到\(qk \leq 10^5\),我们很不自然地考虑根号分治: 当\(k > \sqrt{10^5}\),此时\(q\)比较小,与\(qm\)相关的算法比较适合.对串\(s\)建S ...
- 并不对劲的Loj6031:「雅礼集训 2017 Day1」字符串
题目传送门:-> 看到题目的第一反应当然是暴力:对于串s建后缀自动机,每次询问中,求w对应的子串在s的SAM中的right集合.O(qmk)听上去显然过不了. 数据范围有个∑w<=1e5, ...
随机推荐
- Day6:html和css
Day6:html和css 复习 margin: 0; padding: 0; <!DOCTYPE html> <html lang="en"> <h ...
- 一个applicationContext 加载错误导致的阻塞解决小结
问题为对接一个sso的验证模块,正确的对接姿势为,接入一个 filter, 然后接入一个 SsoListener . 然而在接入之后,却导致了应用无法正常启动,或者说看起来很奇怪,来看下都遇到什么样的 ...
- mysql 开发基础系列13 选择合适的数据类型(下)
一. BloB和Text 1. 合成索引 合成索引可以提高大文本字段BLOB和Text的查询性能, 合成索引是在表中增加一个字段存放散列值,这种技术只能用于精确匹配的查询,可以使用md5()或sha ...
- hashMap的hashCode() 和equal()的使用
hashMap的hashCode() 和equa()的使用 在java的集合中,判断两个对象是否相等的规则是: ,判断两个对象的hashCode是否相等 如果不相等,认为两个对象也不相等,完毕 如果相 ...
- salesforce零基础学习(九十一)Facet
说Facet以前,我们先说一下浏览器加载解析以及渲染的过程.浏览器获取一个HTML的文件时,会按照自上向下的顺序进行解析,并在加载过程中进行渲染.对html解析成DOM树,对CSS 解析成CSS Ru ...
- Chapter 4 Invitations——5
And that was the last contact I'd had with him, though he was there, a foot away from me, every day. ...
- HTTP的基本原理
用户访问万维网文档,万维网文档之间的链接以及万维网文档中数据传送到用户计算机,这些功能的实现都是由超文本传输协议 HTTP(HyperTextTransfer Protocol) 负责完成的. HTT ...
- MYSQL事务隔离级别详解附加实验
参考: https://dev.mysql.com/doc/refman/5.7/en/set-transaction.html http://xm-king.iteye.com/blog/77072 ...
- MFC控件GDI编程
MFC控件GDI编程 一丶学习内容 1.了解常用的GDI函数绘图. 2.使用常用的画笔画刷. 二丶常用的GDI函数绘图 上方则为我们常用的GDI函数了. 画线 矩形. 以及圆 等等. 2.1 画线代码 ...
- Mybatis学习(三)————— 映射文件详解
前面说了全局配置文件中内容的详解,大家应该清楚了,现在来说说这映射文件,这章就对输入映射.输出映射.动态sql这几个知识点进行说明,其中高级映射(一对一,一对多,多对多映射)在下一章进行说明. 一.输 ...