这一章要讲Spark Streaming,讲之前首先回顾下它的用法,具体用法请参照《Spark Streaming编程指南》。

Example代码分析

val ssc = ));
// 获得一个DStream负责连接 监听端口:地址
val lines = ssc.socketTextStream(serverIP, serverPort);
// 对每一行数据执行Split操作
val words = lines.flatMap(_.split(" "));
// 统计word的数量
val pairs = words.map(word => (word, ));
val wordCounts = pairs.reduceByKey(_ + _);
// 输出结果
wordCounts.print();
ssc.start();             // 开始
ssc.awaitTermination();  // 计算完毕退出

1、首先实例化一个StreamingContext

2、调用StreamingContext的socketTextStream

3、对获得的DStream进行处理

4、调用StreamingContext是start方法,然后等待

我们看StreamingContext的socketTextStream方法吧。

  def socketTextStream(
      hostname: String,
      port: Int,
      storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
    ): ReceiverInputDStream[String] = {
    socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel)
  }

1、StoageLevel是StorageLevel.MEMORY_AND_DISK_SER_2

2、使用SocketReceiver的bytesToLines把输入流转换成可遍历的数据

继续看socketStream方法,它直接new了一个

new SocketInputDStream[T](this, hostname, port, converter, storageLevel)

继续深入挖掘SocketInputDStream,追述一下它的继承关系,SocketInputDStream>>ReceiverInputDStream>>InputDStream>>DStream。

具体实现ReceiverInputDStream的类有好几个,基本上都是从网络端来数据的。

它实现了ReceiverInputDStream的getReceiver方法,实例化了一个SocketReceiver来接收数据。

SocketReceiver的onStart方法里面调用了receive方法,处理代码如下:

      socket = new Socket(host, port)
      val iterator = bytesToObjects(socket.getInputStream())
      while(!isStopped && iterator.hasNext) {
        store(iterator.next)
      }

1、new了一个Socket来接收数据,用bytesToLines方法把InputStream转换成一行一行的字符串。

2、把每一行数据用store方法保存起来,store方法是从SocketReceiver的父类Receiver继承而来,内部实现是:

  def store(dataItem: T) {
    executor.pushSingle(dataItem)
  }

executor是ReceiverSupervisor类型,Receiver的操作都是由它来处理。这里先不深纠,后面我们再说这个pushSingle的实现。

到这里我们知道lines的类型是SocketInputDStream,然后对它是一顿的转换,flatMap、map、reduceByKey、print,这些方法都不是RDD的那种方法,而是DStream独有的。

讲到上面这几个方法,我们开始转入DStream了,flatMap、map、reduceByKey、print方法都涉及到DStream的转换,这和RDD的转换是类似的。我们讲一下reduceByKey和print。

reduceByKey方法和RDD一样,调用的combineByKey方法实现的,不一样的是它直接new了一个ShuffledDStream了,我们接着看一下它的实现吧。

override def compute(validTime: Time): Option[RDD[(K,C)]] = {
    parent.getOrCompute(validTime) match {
      case Some(rdd) => Some(rdd.combineByKey[C](createCombiner, mergeValue, mergeCombiner, partitioner, mapSideCombine))
      case None => None
    }
  }

在compute阶段,对通过Time获得的rdd进行reduceByKey操作。接下来的print方法也是一个转换:

new ForEachDStream(this, context.sparkContext.clean(foreachFunc)).register()

打印前十个,超过10个打印"..."。需要注意register方法。

ssc.graph.addOutputStream(this)

它会把代码插入到当前的DStream添加到outputStreams里面,后面输出的时候如果没有outputStream就不会有输出,这个需要记住哦!

启动过程分析

前戏结束之后,ssc.start() 高潮开始了。 start方法很小,最核心的一句是JobScheduler的start方法。我们得转到JobScheduler方法上面去。

下面是start方法的代码:

  def start(): Unit = synchronized {  // 接受到JobSchedulerEvent就处理事件
    eventActor = ssc.env.actorSystem.actorOf(Props(new Actor {
      def receive = {
        case event: JobSchedulerEvent => processEvent(event)
      }
    }), "JobScheduler")

    listenerBus.start()
    receiverTracker = new ReceiverTracker(ssc)
    receiverTracker.start()
    jobGenerator.start()
  }

1、启动了一个Actor来处理JobScheduler的JobStarted、JobCompleted、ErrorReported事件。

2、启动StreamingListenerBus作为监听器。

3、启动ReceiverTracker。

4、启动JobGenerator。

我们接下来看看ReceiverTracker的start方法。

  def start() = synchronized {if (!receiverInputStreams.isEmpty) {
      actor = ssc.env.actorSystem.actorOf(Props(new ReceiverTrackerActor), "ReceiverTracker")
      receiverExecutor.start()
    }
  }

1、首先判断了一下receiverInputStreams不能为空,那receiverInputStreams是怎么时候写入值的呢?答案在SocketInputDStream的父类InputDStream当中,当实例化InputDStream的时候会在DStreamGraph里面添加InputStream。

abstract class InputDStream[T: ClassTag] (@transient ssc_ : StreamingContext) extends DStream[T](ssc_) {
  ssc.graph.addInputStream(this)
  //....
}

2、实例化ReceiverTrackerActor,它负责RegisterReceiver(注册Receiver)、AddBlock、ReportError(报告错误)、DeregisterReceiver(注销Receiver)等事件的处理。

3、启动receiverExecutor(实际类是ReceiverLauncher,这名字起得。。),它主要负责启动Receiver,start方法里面调用了startReceivers方法吧。

    private def startReceivers() {
     // 对应着上面的那个例子,getReceiver方法获得是SocketReceiver
      val receivers = receiverInputStreams.map(nis => {
        val rcvr = nis.getReceiver()
        rcvr.setReceiverId(nis.id)
        rcvr
      })

      // 查看是否所有的receivers都有优先选择机器,这个需要重写Receiver的preferredLocation方法,目前只有FlumeReceiver重写了
      val hasLocationPreferences = receivers.map(_.preferredLocation.isDefined).reduce(_ && _)

      // 创建一个并行receiver集合的RDD, 把它们分散到各个worker节点上
      val tempRDD =
        if (hasLocationPreferences) {
          val receiversWithPreferences = receivers.map(r => (r, Seq(r.preferredLocation.get)))
          ssc.sc.makeRDD[Receiver[_]](receiversWithPreferences)
        } else {
          ssc.sc.makeRDD(receivers, receivers.size)
        }

      // 在worker节点上启动Receiver的方法,遍历所有Receiver,然后启动
      val startReceiver = (iterator: Iterator[Receiver[_]]) => {
        if (!iterator.hasNext) {
          throw new SparkException("Could not start receiver as object not found.")
        }
        val receiver = iterator.next()
        val executor = new ReceiverSupervisorImpl(receiver, SparkEnv.get)
        executor.start()
        executor.awaitTermination()
      }
      // 运行这个重复的作业来确保所有的slave都已经注册了,避免所有的receivers都到一个节点上
      if (!ssc.sparkContext.isLocal) {
        ssc.sparkContext.makeRDD( to , ).map(x => (x, )).reduceByKey(_ + _, ).collect()
      }

      // 把receivers分发出去,启动
      ssc.sparkContext.runJob(tempRDD, startReceiver)
    }

1、遍历receiverInputStreams获取所有的Receiver。

2、查看这些Receiver是否全都有优先选择机器。

3、把SparkContext的makeRDD方法把所有Receiver包装到ParallelCollectionRDD里面,并行度是Receiver的数量。

4、发个小任务给确保所有的slave节点都已经注册了(这个小任务有点儿莫名其妙,感觉怪怪的)。

5、提交作业,启动所有Receiver。

Spark写得实在是太巧妙了,居然可以把Receiver包装在RDD里面,当做是数据来处理!

启动Receiver的时候,new了一个ReceiverSupervisorImpl,然后调的start方法,主要干了这么三件事情,代码就不贴了。

1、启动BlockGenerator。

2、调用Receiver的OnStart方法,开始接受数据,并把数据写入到ReceiverSupervisor。

3、调用onReceiverStart方法,发送RegisterReceiver消息给driver报告自己启动了。

保存接收到的数据

ok,到了这里,重点落到了BlockGenerator。前面说到SocketReceiver把接受到的数据调用ReceiverSupervisor的pushSingle方法保存。

  // 这是ReceiverSupervisorImpl的方法  def pushSingle(data: Any) {
    blockGenerator += (data)
  }
  // 这是BlockGenerator的方法
   def += (data: Any): Unit = synchronized {
    currentBuffer += data
  }

我们看一下它的start方法吧。

  def start() {
    blockIntervalTimer.start()
    blockPushingThread.start()
  }

它启动了一个定时器RecurringTimer和一个线程执行keepPushingBlocks方法。

先看RecurringTimer的实现:

      while (!stopped) {
        clock.waitTillTime(nextTime)
        callback(nextTime)
        prevTime = nextTime
        nextTime += period
      }

每隔一段时间就执行callback函数,callback函数是new的时候传进来的,是BlockGenerator的updateCurrentBuffer方法。

  private def updateCurrentBuffer(time: Long): Unit = synchronized {
    try {
      val newBlockBuffer = currentBuffer
      currentBuffer = new ArrayBuffer[Any]
      ) {
        val blockId = StreamBlockId(receiverId, time - blockInterval)
        val newBlock = new Block(blockId, newBlockBuffer)
        blocksForPushing.put(newBlock)       }
    } catch {case t: Throwable =>
        reportError("Error in block updating thread", t)
    }
  }

它new了一个Block出来,然后添加到blocksForPushing这个ArrayBlockingQueue队列当中。

提到这里,有两个参数需要大家注意的:

spark.streaming.blockInterval   默认值是200
spark.streaming.blockQueueSize  默认值是10

这是前面提到的间隔时间和队列的长度,间隔时间默认是200毫秒,队列是最多能容纳10个Block,多了就要阻塞了。

我们接下来看一下BlockGenerator另外启动的那个线程执行的keepPushingBlocks方法到底在干什么?

  private def keepPushingBlocks() {    while(!stopped) {
        Option(blocksForPushing.poll(, TimeUnit.MILLISECONDS)) match {
          case Some(block) => pushBlock(block)
          case None =>
        }
      }   // ...退出之前把剩下的也输出去了
  }

它在把blocksForPushing中的block不停的拿出来,调用pushBlock方法,这个方法属于在实例化BlockGenerator的时候,从ReceiverSupervisorImpl传进来的BlockGeneratorListener的。

  private val blockGenerator = new BlockGenerator(new BlockGeneratorListener {
    def onError(message: String, throwable: Throwable) {
      reportError(message, throwable)
    }

    def onPushBlock(blockId: StreamBlockId, arrayBuffer: ArrayBuffer[_]) {
      pushArrayBuffer(arrayBuffer, None, Some(blockId))
    }
  }, streamId, env.conf)

1、reportError,通过actor向driver发送错误报告消息ReportError。

2、调用pushArrayBuffer保存数据。

下面是pushArrayBuffer方法:

  def pushArrayBuffer(arrayBuffer: ArrayBuffer[_], optionalMetadata: Option[Any], optionalBlockId: Option[StreamBlockId]
    ) {
    val blockId = optionalBlockId.getOrElse(nextBlockId)
    val time = System.currentTimeMillis
    blockManager.put(blockId, arrayBuffer.asInstanceOf[ArrayBuffer[Any]], storageLevel, tellMaster = true)
    reportPushedBlock(blockId, arrayBuffer.size, optionalMetadata)
  }

1、把Block保存到BlockManager当中,序列化方式为之前提到的StorageLevel.MEMORY_AND_DISK_SER_2(内存不够就写入到硬盘,并且在2个节点上保存的方式)。

2、调用reportPushedBlock给driver发送AddBlock消息,报告新添加的Block,ReceiverTracker收到消息之后更新内部的receivedBlockInfo映射关系。

处理接收到的数据

前面只讲了数据的接收和保存,那数据是怎么处理的呢?

之前一直讲ReceiverTracker,而忽略了之前的JobScheduler的start方法里面最后启动的JobGenerator。

  def start(): Unit = synchronized {
    eventActor = ssc.env.actorSystem.actorOf(Props(new Actor {
      def receive = {
        case event: JobGeneratorEvent =>  processEvent(event)
      }
    }), "JobGenerator")
    if (ssc.isCheckpointPresent) {
      restart()
    } else {
      startFirstTime()
    }
  }

1、启动一个actor处理JobGeneratorEvent事件。

2、如果是已经有CheckPoint了,就接着上次的记录进行处理,否则就是第一次启动。

我们先看startFirstTime吧,CheckPoint以后再说吧,有点儿小复杂。

  private def startFirstTime() {
    val startTime = new Time(timer.getStartTime())
    graph.start(startTime - graph.batchDuration)
    timer.start(startTime.milliseconds)
  }

1、timer.getStartTime计算出来下一个周期的到期时间,计算公式:(math.floor(clock.currentTime.toDouble / period) + 1).toLong * period,以当前的时间/除以间隔时间,再用math.floor求出它的上一个整数(即上一个周期的到期时间点),加上1,再乘以周期就等于下一个周期的到期时间。

2、启动DStreamGraph,启动时间=startTime - graph.batchDuration。

3、启动Timer,我们看看它的定义:

  private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,
    longTime => eventActor ! GenerateJobs(new Time(longTime)), "JobGenerator")

到这里就清楚了,DStreamGraph的间隔时间就是timer的间隔时间,启动时间要设置成比Timer早一个时间间隔,原因再慢慢探究。

可以看出来每隔一段时间,Timer给eventActor发送GenerateJobs消息,我们直接去看它的处理方法generateJobs吧,中间忽略了一步,大家自己看。

  private def processEvent(event: JobGeneratorEvent) {
    event match {
      case GenerateJobs(time) => generateJobs(time)
      case ClearMetadata(time) => clearMetadata(time)
      case DoCheckpoint(time) => doCheckpoint(time)
      case ClearCheckpointData(time) => clearCheckpointData(time)
    }
  }

下面是generateJobs方法。

  private def generateJobs(time: Time) {
    SparkEnv.set(ssc.env)
    Try(graph.generateJobs(time)) match {
      case Success(jobs) =>
        val receivedBlockInfo = graph.getReceiverInputStreams.map { stream =>
          val streamId = stream.id
          val receivedBlockInfo = stream.getReceivedBlockInfo(time)
          (streamId, receivedBlockInfo)
        }.toMap
        jobScheduler.submitJobSet(JobSet(time, jobs, receivedBlockInfo))
      case Failure(e) =>
        jobScheduler.reportError("Error generating jobs for time " + time, e)
    }
    eventActor ! DoCheckpoint(time)
  }

1、DStreamGraph生成jobs。

2、从stream那里获取接收到的Block信息。

3、调用submitJobSet方法提交作业。

4、提交完作业之后,做一个CheckPoint。

先看DStreamGraph是怎么生成的jobs。

  def generateJobs(time: Time): Seq[Job] = {
    val jobs = this.synchronized {
      outputStreams.flatMap(outputStream => outputStream.generateJob(time))
    }
    jobs
  }

outputStreams在这个例子里面是print这个方法里面添加的,这个在前面说了,我们继续看DStream的generateJob。

  private[streaming] def generateJob(time: Time): Option[Job] = {
    getOrCompute(time) match {
      case Some(rdd) => {
        val jobFunc = () => {
          val emptyFunc = { (iterator: Iterator[T]) => {} }
          context.sparkContext.runJob(rdd, emptyFunc)
        }
        Some(new Job(time, jobFunc))
      }
      case None => None
    }
  }

1、调用getOrCompute方法获得RDD

2、new了一个方法去提交这个作业,缺什么都不做

为什么呢?这是直接跳转的错误,呵呵,因为这个outputStream是print方法返回的,它应该是ForEachDStream,所以我们应该看的是它里面的generateJob方法。

  override def generateJob(time: Time): Option[Job] = {
    parent.getOrCompute(time) match {
      case Some(rdd) =>
        val jobFunc = () => {
          foreachFunc(rdd, time)
        }
        Some(new Job(time, jobFunc))
      case None => None
    }
  }

这里请大家千万要注意,不要在这块被卡住了。

我们看看它这个RDD是怎么出来的吧。

  private[streaming] def getOrCompute(time: Time): Option[RDD[T]] = {
    // If this DStream was not initialized (i.e., zeroTime not set), then do it
    // If RDD was already generated, then retrieve it from HashMap
    generatedRDDs.get(time) match {

      // 这个RDD已经被生成过了,直接用就是了
      case Some(oldRDD) => Some(oldRDD)

      // 还没生成过,就调用compte函数生成一个
      case None => {
        if (isTimeValid(time)) {
          compute(time) match {
            case Some(newRDD) =>
         // 设置保存的级别
              if (storageLevel != StorageLevel.NONE) {
                newRDD.persist(storageLevel)
              }
         // 如果现在需要,就做CheckPoint
              if (checkpointDuration != null && (time - zeroTime).isMultipleOf(checkpointDuration)) {
                newRDD.checkpoint()
              }
         // 添加到generatedRDDs里面去,可以再次利用
              generatedRDDs.put(time, newRDD)
              Some(newRDD)
            case None =>
              None
          }
        } else {
          None
        }
      }
    }
  }

从上面的方法可以看出来它是通过每个DStream自己实现的compute函数得出来的RDD。我们找到SocketInputDStream,没有compute函数,在父类ReceiverInputDStream里面找到了。

  override def compute(validTime: Time): Option[RDD[T]] = {
    // 如果出现了时间比startTime早的话,就返回一个空的RDD,因为这个很可能是master挂了之后的错误恢复    if (validTime >= graph.startTime) {
      val blockInfo = ssc.scheduler.receiverTracker.getReceivedBlockInfo(id)
      receivedBlockInfo(validTime) = blockInfo
      val blockIds = blockInfo.map(_.blockId.asInstanceOf[BlockId])
      Some(new BlockRDD[T](ssc.sc, blockIds))
    } else {
      Some(new BlockRDD[T](ssc.sc, Array[BlockId]()))
    }
  }

通过DStream的id把receiverTracker当中把接收到的block信息全部拿出来,记录到ReceiverInputDStream自身的receivedBlockInfo这个HashMap里面,就把RDD返回了,RDD里面实际包含的是Block的id的集合。

现在我们就可以回到之前JobGenerator的generateJobs方法,我们就清楚它这句是提交的什么了。

jobScheduler.submitJobSet(JobSet(time, jobs, receivedBlockInfo))

JobSet是记录Job的完成情况的,直接看submitJobSet方法吧。

  def submitJobSet(jobSet: JobSet) {
    if (jobSet.jobs.isEmpty) {
    } else {
      jobSets.put(jobSet.time, jobSet)
      jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
    }
  }

遍历jobSet里面的所有jobs,通过jobExecutor这个线程池提交。我们看一下JobHandler就知道了。

  private class JobHandler(job: Job) extends Runnable {
    def run() {
      eventActor ! JobStarted(job)
      job.run()
      eventActor ! JobCompleted(job)
    }
  }

1、通知eventActor处理JobStarted事件。

2、运行job。

3、通知eventActor处理JobCompleted事件。

这里的重点是job.run,事件处理只是更新相关的job信息。

  def run() {
    result = Try(func())
  }

在遍历BlockRDD的时候,在compute函数获取该Block(详细请看BlockRDD),然后对这个RDD的结果进行打印。

到这里就算结束了,最后来个总结吧,图例在下一章补上,这一章只是过程分析:

1、可以有多个输入,我们可以通过StreamingContext定义多个输入,比如我们监听多个(host,ip),可以给它们定义各自的处理逻辑和输出,输出方式不仅限于print方法,还可以有别的方法,saveAsTextFiles和saveAsObjectFiles。这块的设计是支持共享StreamingContext的。

2、StreamingContext启动了JobScheduler,JobScheduler启动ReceiverTracker和JobGenerator。

3、ReceiverTracker是通过把Receiver包装成RDD的方式,发送到Executor端运行起来的,Receiver起来之后向ReceiverTracker发送RegisterReceiver消息。

3、Receiver把接收到的数据,通过ReceiverSupervisor保存。

4、ReceiverSupervisorImpl把数据写入到BlockGenerator的一个ArrayBuffer当中。

5、BlockGenerator内部每个一段时间(默认是200毫秒)就把这个ArrayBuffer构造成Block添加到blocksForPushing当中。

6、BlockGenerator的另外一条线程则不断的把加入到blocksForPushing当中的Block写入到BlockManager当中,并向ReceiverTracker发送AddBlock消息。

7、JobGenerator内部有个定时器,定期生成Job,通过DStream的id,把ReceiverTracker接收到的Block信息从BlockManager上抓取下来进行处理,这个间隔时间是我们在实例化StreamingContext的时候传进去的那个时间,在这个例子里面是Seconds(1)。

岑玉海

转载请注明出处,谢谢!

Spark源码系列(八)Spark Streaming实例分析的更多相关文章

  1. Spark源码系列:RDD repartition、coalesce 对比

    在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对R ...

  2. 使用 IntelliJ IDEA 导入 Spark源码及编译 Spark 源代码

    1. 准备工作 首先你的系统中需要安装了 JDK 1.6+,并且安装了 Scala.之后下载最新版的 IntelliJ IDEA 后,首先安装(第一次打开会推荐你安装)Scala 插件,相关方法就不多 ...

  3. Apache Spark源码走读之6 -- 存储子系统分析

    欢迎转载,转载请注明出处,徽沪一郎. 楔子 Spark计算速度远胜于Hadoop的原因之一就在于中间结果是缓存在内存而不是直接写入到disk,本文尝试分析Spark中存储子系统的构成,并以数据写入和数 ...

  4. Spark源码系列(五)分布式缓存

    这一章想讲一下Spark的缓存是如何实现的.这个persist方法是在RDD里面的,所以我们直接打开RDD这个类. def persist(newLevel: StorageLevel): this. ...

  5. Spark源码系列(一)spark-submit提交作业过程

    前言 折腾了很久,终于开始学习Spark的源码了,第一篇我打算讲一下Spark作业的提交过程. 这个是Spark的App运行图,它通过一个Driver来和集群通信,集群负责作业的分配.今天我要讲的是如 ...

  6. Spark源码系列:DataFrame repartition、coalesce 对比

    在Spark开发中,有时为了更好的效率,特别是涉及到关联操作的时候,对数据进行重新分区操作可以提高程序运行效率(很多时候效率的提升远远高于重新分区的消耗,所以进行重新分区还是很有价值的).在Spark ...

  7. Spark源码系列(七)Spark on yarn具体实现

    本来不打算写的了,但是真的是闲来无事,整天看美剧也没啥意思.这一章打算讲一下Spark on yarn的实现,1.0.0里面已经是一个stable的版本了,可是1.0.1也出来了,离1.0.0发布才一 ...

  8. Spark源码系列(二)RDD详解

    1.什么是RDD? 上一章讲了Spark提交作业的过程,这一章我们要讲RDD.简单的讲,RDD就是Spark的input,知道input是啥吧,就是输入的数据. RDD的全名是Resilient Di ...

  9. Spark源码系列(九)Spark SQL初体验之解析过程详解

    好久没更新博客了,之前学了一些R语言和机器学习的内容,做了一些笔记,之后也会放到博客上面来给大家共享.一个月前就打算更新Spark Sql的内容了,因为一些别的事情耽误了,今天就简单写点,Spark1 ...

随机推荐

  1. 【译】用Fragment创建动态的界面布局(附Android示例代码)

    原文链接:Building a Dynamic UI with Fragments 为了在Android上创建一个动态和多视图的用户界面,你需要封装UI控件和模块化Activity的行为,以便于你能够 ...

  2. proj01总结:spring jdbc操作

    commons-collections.jar: Apache Commons包中的一个,包含了一些Apache开发的集合类,功能比java.util.*强大.必须使用的jar包. commons-l ...

  3. 编码剖析Spring管理bean的原理

    project目录 MyClassPathXMLApplicationContext读取xml,以及实例化bean. 因为是一开始实例化配置文件所有bean,所以需要构造器完成这些工作. packag ...

  4. 点击div外面该div消失

    <head> <meta charset="UTF-8"> <title></title> <script type=&quo ...

  5. centos 关闭防火墙

    在centos上搭建了个服务器,本机可以访问,局域网无法访问 解决方案:关闭防火墙 sudo systemctl stop firewalld.service 令人恼火的是stop iptables之 ...

  6. C语言实现单链表-01版

    单链表的应用非常广,它可以实现栈,队列等: Problem 我对学习任何东西都希望能找到尽可能简单的例子,而不是看起来好高大上的: 对链表这样简答的数据结构,有些书也是写得太过“完美”啦: 初学者很难 ...

  7. paip.windows io监控总结

    paip.windows io监控总结 io的主要参数是个.disk queue length 作者Attilax  艾龙,  EMAIL:1466519819@qq.com 来源:attilax的专 ...

  8. javaweb学习总结(十六)——JSP指令

    一.JSP指令简介 JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分. 在JSP 2.0规范中共定义了三个指令: pa ...

  9. JAVA数组所占内存大小的对比

    1.两个数据模型 第一个是基本类型数组,第二个使用的是Float对象数组 public class SummaryModel{ private float[] summaryData; public ...

  10. 大家一起写mvc(二)

    上一篇已经看了,我想大家都明白了mvc的原理,今天我们来说一下要写自己mvc框架必须要会的技术. mvc的目录是这样的 src目录是我们核心的mvc代码.这个代码明天讲,今天主要讲的代码都在test目 ...