1、增加一个参数来控制缩进打印:level

'''这是一个模块,可以打印列表,其中可能包含嵌套列表'''
def print_list(the_list,level):
"""这个函数取一个位置参数the_list,他可以是任何列表,该列表中的每个数据都会递归地打印到屏幕上,各数据项各占一行;
level参数用来在遇到嵌套列表时插入制表符,实现缩进打印。"""
for each_item in the_list:
if isinstance (each_item,list):
print_list(each_item,level)
else:
for tab_stop in range(level):
print ('\t',end='')
print(each_item)

rang():返回一个迭代器,根据需要生生成一个指定范围的数字;

 使用print()BIF在屏幕上打印制表符(TAB),而不是简单的换行(这是print()的默认行为),需要使用python 代码:print ('\t',end='')。

按F5运行模块,将函数导入到IDLE的命名空间,

>>>
=========== RESTART: D:\workspace\eclipse\nester_xcc\nester_xcc.py ===========
>>> movie=['泰囧',2014,'徐峥',91,['王宝强',['黄渤','陶虹','范冰冰']]]
>>> print_list(movie,0)
>>>

因Level设置为0,从没进行改变,所以level参数对显示的输出不产生任何影响。

2、每次处理一个嵌套列表时都需要将level的值增加1.

'''这是一个模块,可以打印列表,其中可能包含嵌套列表'''
def print_list(the_list,level):
"""这个函数取一个位置参数the_list,他可以是任何列表,该列表中的每个数据都会递归地打印到屏幕上,各数据项各占一行;
level参数用来在遇到嵌套列表时插入制表符,实现缩进打印。"""
for each_item in the_list:
if isinstance (each_item,list):
print_list(each_item,level+1) #在每次递归调用函数时将level值增加1
else:
for tab_stop in range(level):
print ('\t',end='')
print(each_item)

运行该模块:

>>>
=========== RESTART: D:\workspace\eclipse\nester_xcc\nester_xcc.py ===========
>>> movie=['泰囧',2014,'徐峥',91,['王宝强',['黄渤','陶虹','范冰冰']]]
>>> print_list(movie,0)
泰囧
2014
徐峥
91
王宝强
黄渤
陶虹
范冰冰
>>> print_list(movie,1)
泰囧
2014
徐峥
91
王宝强
黄渤
陶虹
范冰冰
>>> print_list(movie,-9)
泰囧
2014
徐峥
91
王宝强
黄渤
陶虹
范冰冰
>>> print_list(movie)
Traceback (most recent call last):
File "<pyshell#17>", line 1, in <module>
print_list(movie)
TypeError: print_list() missing 1 required positional argument: 'level'
>>>

用新代码更新PyPI:

编辑发布的setup.py程序:修改版本号为1.1.0

from distutils. core import setup
setup(
name ='nester_xcc',
version='1.1.0',
py_modules=['nester_xcc'],
author='xcc',
author_email='984827641@qq.com',
url='http://www.cnblogs.com/apple2016/',
description='嵌套列表的打印举例',
)
D:\workspace\eclipse\nester_xcc>python setup.py sdist upload
running sdist
running check
warning: sdist: manifest template 'MANIFEST.in' does not exist (using default file list) warning: sdist: standard file not found: should have one of README, README.txt writing manifest file 'MANIFEST'
creating nester_xcc-1.1.0
making hard links in nester_xcc-1.1.0...
hard linking nester_xcc.py -> nester_xcc-1.1.0
hard linking setup.py -> nester_xcc-1.1.0
creating 'dist\nester_xcc-1.1.0.zip' and adding 'nester_xcc-1.1.0' to it
adding 'nester_xcc-1.1.0\nester_xcc.py'
adding 'nester_xcc-1.1.0\PKG-INFO'
adding 'nester_xcc-1.1.0\setup.py'
removing 'nester_xcc-1.1.0' (and everything under it)
running upload
Submitting dist\nester_xcc-1.1.0.zip to https://pypi.python.org/pypi
Server response (200): OK D:\workspace\eclipse\nester_xcc>

发布成功。

以上新版本实现了嵌套打印缩进的特性,但是并不是所有用户都喜欢。由于模块中print_list()增加了第二个参数,意为着模块中有个不同的API,使用原来API的用户会遇到问题。

理想的解决方案是同时提供这两个API,一个提供新特性,另一个不提供,如何实现呢?就是通过使用可选参数来实现,使得第二个参数成为可选参数。

通过为一个函数的必须参数提供一个缺省值,实现必填参数变成可选参数;

3、将level设置一个缺省值,变成可选参数:

'''这是一个模块,可以打印列表,其中可能包含嵌套列表'''
def print_list(the_list,level=0):
"""这个函数取一个位置参数the_list,他可以是任何列表,该列表中的每个数据都会递归地打印到屏幕上,各数据项各占一行;
level参数用来在遇到嵌套列表时插入制表符,实现缩进打印。"""
for each_item in the_list:
if isinstance (each_item,list):
print_list(each_item,level+1) #在每次递归调用函数时将level值增加1
else:
for tab_stop in range(level):
print ('\t',end='')
print(each_item)

现在可以采用不同的方式调用这个函数,运行该模块:

>>>
=========== RESTART: D:\workspace\eclipse\nester_xcc\nester_xcc.py ===========
>>> movie=['泰囧',2014,'徐峥',91,['王宝强',['黄渤','陶虹','范冰冰']]]
>>> print_list(movie,0)
泰囧
2014
徐峥
91
王宝强
黄渤
陶虹
范冰冰
>>> print_list(movie)
泰囧
2014
徐峥
91
王宝强
黄渤
陶虹
范冰冰
>>> print_list(movie,2)
泰囧
2014
徐峥
91
王宝强
黄渤
陶虹
范冰冰
>>> print_list(movie,-9)
泰囧
2014
徐峥
91
王宝强
黄渤
陶虹
范冰冰
>>>

将支持两个API的模块发布到PyPI:

from distutils. core import setup
setup(
name ='nester_xcc',
version='1.2.0',
py_modules=['nester_xcc'],
author='xcc',
author_email='984827641@qq.com',
url='http://www.cnblogs.com/apple2016/',
description='嵌套列表的打印举例',
)
D:\workspace\eclipse\nester_xcc>python setup.py sdist upload
running sdist
running check
warning: sdist: manifest template 'MANIFEST.in' does not exist (using default fi
le list) warning: sdist: standard file not found: should have one of README, README.txt writing manifest file 'MANIFEST'
creating nester_xcc-1.2.0
making hard links in nester_xcc-1.2.0...
hard linking nester_xcc.py -> nester_xcc-1.2.0
hard linking setup.py -> nester_xcc-1.2.0
creating 'dist\nester_xcc-1.2.0.zip' and adding 'nester_xcc-1.2.0' to it
adding 'nester_xcc-1.2.0\nester_xcc.py'
adding 'nester_xcc-1.2.0\PKG-INFO'
adding 'nester_xcc-1.2.0\setup.py'
removing 'nester_xcc-1.2.0' (and everything under it)
running upload
Submitting dist\nester_xcc-1.2.0.zip to https://pypi.python.org/pypi
Server response (200): OK D:\workspace\eclipse\nester_xcc>

发布成功。

尽管这个API允许用户安装原来的方式调用函数,但是默认情况下会打开嵌套打印,但是有些人不希望如此。如何实现该嵌套打印行为是可选的呢?

解决方案之一是增加第三个参数indent,需要缩进时就设置为True,不需要缩进就设置为False,默认这个参数为False;

4、增加第三个参数indent来控制实现缩进的代码,默认为false,即不嵌套打印

'''这是一个模块,可以打印列表,其中可能包含嵌套列表'''
def print_list(the_list,indent=False,level=0):
"""这个函数取一个位置参数the_list,他可以是任何列表,该列表中的每个数据都会递归地打印到屏幕上,各数据项各占一行;
level参数用来在遇到嵌套列表时插入制表符,实现缩进打印。
indent参数用来控制实现缩进的代码,默认为false,即不嵌套打印"""
for each_item in the_list:
if isinstance (each_item,list):
print_list(each_item,indent,level+1) #在每次递归调用函数时将level值增加1
else:
if indent: #如果为真,则打印制表符;否则,不打印制表符
for tab_stop in range(level):
print ('\t',end='')
print(each_item)

运行模块:

>>>
=========== RESTART: D:\workspace\eclipse\nester_xcc\nester_xcc.py ===========
>>> movie=['泰囧',2014,'徐峥',91,['王宝强',['黄渤','陶虹','范冰冰']]]
>>> print_list(movie)
泰囧
2014
徐峥
91
王宝强
黄渤
陶虹
范冰冰
>>> print_list(movie,True)
泰囧
2014
徐峥
91
王宝强
黄渤
陶虹
范冰冰
>>> print_list(movie,True,4)
泰囧
2014
徐峥
91
王宝强
黄渤
陶虹
范冰冰
>>>

发布版本:

from distutils. core import setup
setup(
name ='nester_xcc',
version='1.3.0',
py_modules=['nester_xcc'],
author='xcc',
author_email='984827641@qq.com',
url='http://www.cnblogs.com/apple2016/',
description='嵌套列表的打印举例',
)

修改发布程序setup.py

 D:\workspace\eclipse\nester_xcc>python setup.py sdist upload
running sdist
running check
warning: sdist: manifest template 'MANIFEST.in' does not exist (using default fi
le list) warning: sdist: standard file not found: should have one of README, README.txt writing manifest file 'MANIFEST'
creating nester_xcc-1.3.0
making hard links in nester_xcc-1.3.0...
hard linking nester_xcc.py -> nester_xcc-1.3.0
hard linking setup.py -> nester_xcc-1.3.0
creating 'dist\nester_xcc-1.3.0.zip' and adding 'nester_xcc-1.3.0' to it
adding 'nester_xcc-1.3.0\nester_xcc.py'
adding 'nester_xcc-1.3.0\PKG-INFO'
adding 'nester_xcc-1.3.0\setup.py'
removing 'nester_xcc-1.3.0' (and everything under it)
running upload
Submitting dist\nester_xcc-1.3.0.zip to https://pypi.python.org/pypi
Server response (200): OK D:\workspace\eclipse\nester_xcc>

发布新版本1.3.0

5、查看三次修改的版本发布情况:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABNMAAAIZCAIAAAADUO73AAAgAElEQVR4nOyd+VdT197/8/v3vyg/PMu1utZ9HPr0tuLQVk1v0dvB3nptr14sETKBoAwqIigqgyKKdcCJKoOAiCPOKCjgBHWeAkiCEobMCSptrfv7w05Ozjk5JwmEML5f6716wxn23ueQ9vrys88+kh4AAAAAAAAAACCYSIZ7AAAAAAAAAAAAxjgwTwAAAAAAAAAAwQXmCQAAAAAAAAAguEgMAAAAAAAAAABAMIF5AgAAAAAAAAAILjBPAAAAAAAAAADBBeYJAAAAAAAAACC4wDwBAAAAAAAAAAQXidFgQBAEQRAEQRAEQZDgRWIEAAAAAAAAAACCCcwTAAAAAAAAAEBwgXkCAAAAAAAAAAguME8AAAAAAAAAAMEF5gkAAAAAAMAQUdfYiCCBZ7i/yANBYjIaEQRBEARBEAQZgtQ1NhIAAqOusdHn12wERmIKGIPByPps0Hf16Dq62l52trbrtS87X3Z2d/UYmAO6e4xCbYwRWltbL168uHnz5qNHj5pMJqNxLF8sAAAAAADoLzBPEDh1jY2j8Ws2COZpMplaXnZV331xsPpp9ulHq8uaYg/fVh28Kd/fEH3wRmxBfUrp7ZzjTSVX7t/X6AaluxEIlcyysjK1Wh0TE1NaWmoymQwGg6/zAAAAAADAOGJkKgEYXfhpnt0jjEEwz7L658rCu/O23fjnL3e+yq37Kuf6P7Jr5mRVz950edbGi19suPD5houfbTg/Y92ZH3Krd5+5MwZ8zPMS6JbCwkKlUimXy6l5jqKaJx3qKBowAAAAAMBoBOYJAsdP8+wZYQzcPOkk2+M3Wr/Z1fj1L7cX/HJ94c5r0sxL0g1Vs9efnr3+9BdpJ79IPfFZSuXMNcdmrq6YmVwRuuro9NQzW481mEymUeo4BoNBUM/oxuLiYoVCoVAoysrKTCO75mk0Gru7uw0GQ3d3N7NleIcEAAAAADDmgXmCwPHTPIdtKSERJGaTacDp7u5eUXL3612/xR6+dVfT/rj1VULhzTmZl2etPz0z9eRnqSdnpByfvrpi2uqjoSvLpiaVhiaWfJp4ZGZyRcODVrPJZAqg6+HNs2fPdFote4vRYDCbTEVFRdQ8S48cYTaOzHS8enXx4sUjR47U19VdvnTpt6Yms8l04vjxYR8YgiAIgiDIGA7MEwROXWOjP1+zIfibFD8pipn1weRZAzRPk9FkNpnaXnYu3X/r618azza20u3XHmr/kX1l1rpTn609MWNN5YyUyunJR6euLPs08cjUpNK/xxd9sqLwk5UV24/fNJtMRoNx2P/l729u3by5Z/fupKSk6suXzSy3ZMxTLpfL5fKy0lLzCDZPuubV3d9+O3DggE6rPXDgQHFxsb6jIyEhYdjHhiAIgiAIMoYD8wSB46d5mkcMLvMcEEaTyWw2a9o7F++qm5t3a+e5h3R7QfVjadaVz9NOfbb2xPTkiunJFbTa+WnikU8Siv8eX/TJ8sOfrKxYX3TNbDYbjabBupihoaura9OmTbGxsXK5/OrVq2az2WRyXoLRaDSbzUzNs6ysjNk4AqHD1mq1lZWVPT09VVVVpaWltbW1e/fuHe6hAQAAAACMZWCeIHDqGhv9+ZpZRgzFywIwT6ouT7X6H3de+yr78tzsS1tO3ss9fTcs49wX609/kXp8ZsqxGWuOha4+OnVl2ScJJZ8klPx9RdH/xR36+4pDHyeUpxXVmlnaNlro7u7OyspSq9VyubympsY8as2T0tzcfOTIkfb29urq6qMuhntQAAAAAABjGZgnCBw/zdMmQHnU5FkfuDJ7S4N7T8P22cyuZeWsUxoyv3Of8sF32xvYx3+3PXMZezv74MWZruZLAjFPg9FkNpsft+m/3379q9x6afbVsLzbX22/NXvT5c/Tz32+7tzMtKppyRWfJh2ZmlT29/jij5cXfrz88JTYXz+OPfBxfGlaYY2ZEbOA/dNkMjHPrTIrAPk8xecBnsdQ81QoFFFRUdQ8DQYDu0H3c56lpexemCnO/l8RvRA/L4c3bHoWPd3Lud3d3RqNpqenR6vVtra2tra2Njc3+9kRAAAAAAAYADBPEDh+mqedD0c7aaLK7Ha73X4jbzZvV2w5PedILP+U2TkNAqfEltvtDVnf8Q5enHXD3Ug/zNPo4U5tHd0ry+6qD92JLrip3F+n2Htdvq8uKv9aVP41ef61r9afnLqyfGpiyccrCj9efvj/4n79aFnB/y078NGKkrTDV4V66LeCei8qDnpN1WAwZGdn0/emXLt2zXMkjHmWl5fT4z3H0C8F9exCDO9tjrryMgAAAADAmATmCQLHT/N08Dkqnzzrg8krSz12lMZSpbzhcDgcjhtZ31Fp5B92M2fxB5NnfRB71OFwOFzmKS9z7S5b+QGrfXowbZO2L7GYzf7EZDLRD4YeQ2dXT2e3oaOzR9/Zo33V+eKlvu2l65/t+hft+raX+he6V/EFtaEpJ6cmFP/f8sKPlx/+v9iCKTEHPorZP2V58drDVy0mk9XYaTV1WU16q7HT1ZHJz/GYTe4jX7182dTYePXKlTOnT1edOXP1ypUnjx97Hsaku6vr5o0bzRqNWOPdXV3atra2Fy/0HR1MOy/b23VabUZGhlwuj4yMvHTxYldnZ9uLFx2vXjEdFRcVKRQKuVxeUlLCdG02mdp1uqdPnjx5/JgeLDYwk9FI//ng/v0r1dVnTp8+W1VVW1v7orWVfYDgWTTtOt2d27cvXbx48sSJs1VVNTU1Lc3NXs6lw2A/juzn/UcQBEEQBEEGEJgnCJy6xkZ/vmavPSiLYxckV5U5N9/K5tcqZ30weZa83H3ira2L3bviKl6/fv361o45nEacx8zZekusX7/Mk2rnnWcvf7n0PLaoKWJvw5L8+iV7rv93V234rtr/7qxZ/EvN4h3Vi7ZfWpR78afciz/mnP8x59wXa49+El/89+WHP4r99aNlBVNiDk5S75+s3vtpfHHcrw1209N35o3vzJnvjBnvTFl/OPb1Gm9ZzGaLyeBzPFSQDD099fX1Bw8cWLVqVVRUVExMTGxs7LJlyxQKRUxMzK5du549e2bhGpehp+dsVVVqamp0dHRDfb3Fw8fojxcuXFi+fLlard6/bx/d0q7Tbdy4kT7hKZPJIiIilErl8rg4pVK5ZcsWC8s85XK5UqmsOHrUYjY/eviw4ujRLZs3L4+LU6vVMTExq1etKi0t1Wq1Yhd169atnJycmJgYlUq1bNmymJgYhUIRH7/i4IEDzz0uh/mxU6+vr6vbu3evWq2mlx8bG6tWq6OiouLi4g4dOqTT6SwiuosgCIIgCIIMWWCeIHD8NM83IpSz/HNO7q03b25tFjJPxVH3wfTz7dz/fjB51gdxx968efPm9i9zJs/64LtfbruapXvn5N4S61HicyUis9lisVhKrz//Yfedr3femZt7/asttV9mX/kyq3pOxuU5my7N2nj+i/Rzn60/OzPtzIzUU9NSTk5bc2Jq8rFPEko+jjv08fLDHy0rmBx9YHL0gUmqfROVe6YmFMUX3LAb7pE/1hBbErEmEmsieZNEehNfG6/QPn2O6vnz5zt37qRmFRMTs379+m3btuXn52/fvj0hIUGhUKhUqpSUlCdPnlgsFrPZ2WBHR8eGDRuio6NVKtXNmzctFovJZGI3S388c+aMUqmMjo7etWuXwWCwWCw6nS4vL2/Dhg1qtVomk8lkslWrVq1fvz49PX3nzp3uVZuKi+lToAUFBZWVlbGxscuXL1epVMlr1iQkJCqVyqioqOjo6A0bNmi1Wl6/ZrO5srIyOjqa+u369etzc3O3bNmSlJSkVqtUKlVSUtKNGzfYl0O5devW5s2bo6Ojo6Oj169fn5eXV1BQsHv37rVr19LyrFqtTk9Pb21t9bxeAAAAAAAwlMA8QeDUNTb68zV7652KVR9MnvXB/F/uvH1LzXBO7m3+MVQvJ68qf/v2reuwD+KOuXfN/+UOr0HXwXdcmsqc6Ns8LRbLxXu6r3+5PW9bXVj2pX9kXJBuPCfdcHbW+tNfpJ36IvXkZ2uPz0w5Nj356LRVZaErS0OTjkxNKvl7PH2289BHsb9Oodqp3j9RmT9JuefT+OLlBfV24wNiTiTdCUS/nHTEkPbo90b1X9Zkm0ljsVjE5JNK1/Pnz9esWUPre3v37m1qampvb2eOefr06ebNm6OiohQKxfr161+9emWmZVuLpbOzMzMzUy6XezfPc+fO0cb37NlDp0qbTCadTtfc3JyZmUnd8sKFC3TLy5cvmYEVFxcrlcqIiAiVShUbG5uYmFhcXHznzp3nz58/fvz42LFjKpWKyufOnTsZgTQajRaL5dSpU3K5PCoqKiEhoaamhjZrNBqfPXt28OBBmUwWFRUVHx/f1NTEdGcymcrKyuLi4lQq1caNG69du6bT6Zhr0Wq1ZWVlCoUiMjIyOjp67969PT09PGsFAAAAAABDCcwTBI6f5vk7j8adczwKm3O2NYrsWn30999//71S6XHKB8sr3afM39nI6mDLfP7BymO///7770eX+2eeOn3PsuJ783bcnJt9+cuMS9KMC7M3nJu1vuqLdWc+Tzv1WeqJGSmV09ccm7a6YtrK8qlJpZ8mlnySUPzxikKndsYcmKzeP1m9f5Jq30Rl/kTF7qnxRSt+bbCbHhJLEuleTvTRpENJ9Ir37XJiU7ztLrVYLBaLcGmOmuGFCxfopNYtW7Z0d3czu+iCrhaLpaWlJSkpKSoqSqlUnjx5kjmxo6ODPqjp3TzPnj2rVquVSuWePXvogkB0r9ls3rx5M7PCkOeJ1DyXLl2qVCoPHjz4/Plz3viPHz9OVVCpVN67d89isdCa6t27d2NjY6OiopYvX97o+iYxXZvN5oKCAnpiampqe3s7leGOjo60dWlKpXLZsmW1tbX0LGZhW/rjvn375HK5XC5ftWoVLXtCPgEAAAAAhguYJwgcP83zDwGOc0xy+XH3nia2fK6uYLZXrmZtpKevrmCOn7+zidN+Yw5LPpWVzq0V1DytFov3XHmo+3bHja+yq/+ReUmacX7OhnOzN5z9Yv2Zz9NOfZ56Yubayhlrjk1Prpi2qnzqytJPE498klDy9/giupjtlJiDU2IOTFLv/19l/kRl/v8q9/yvfHdoYsmqopsO411iiyfdseSVkryKIi+XknYZMS/9s2eTzdRptVisZrPnYExGo9Viqb58WaVSKRXKvLy87p5u+qwj75ijR4/S4mTy6tVdnZ10V6den5mRERUVRc3TarGYTSZ2+/THc+fOqVQqhUKxZ/du+myk1WKxmM09rreqREZG1tTUWFxPTtK9VouluLiYat6hX39lGmTWDbJaLFqtNjk5eenSpXK5/PSpU/QAs8m0Z/duujRRcXGx1WIxGgx0JBaz2WgwWC0WnU63du3ayMhIuVx+6uRJemJXZ2dmZiY1z/r6eovZbOjpYa6FntjU2Lhs2bLIyMj4+PgH9+97XjKCIAiCIAgyZIF5gsCpa2z052v25wjDt3kevPJsXt7Nr7IuSTedl266MCu96ov1pz9LPflZ6smZKcdnplROT64IXVk+Nans08QjtNr58fJDH8X+OmXZwcnRByap901U5v+vYs//yvdMVORPVOZ/uqJw38kHr00XydtEoleRV1GkPYLolhBtOOlY9FdPjN3wxGqxWM0CgkQF7/KlS9QMt23b1tPdzTuGmtVvTU1qtXqpbKlKpaqvr6e7OvX6LNZsW6uIeTI1z/w9e6gZ0r2Gnp6srCxa86ytqWHGw5xIn/NUKBQVFRVWlwOzB28yGnfv2uVc/7a4mG5//vz5smXLaIX24YMHnqOi7ZS4HiLNysrq1OutFou+o2PTpk1KpTImJqa+ro7XIx1ba0tLQkICncT76OFD9pgRBEEQBEGQIQ7MEwSOn+b5boTh2zzTKh/My63/R8YF6aYLszecnZVe9Xnaqc/STlHtnLHmWOiq8tCVZaFJRz5NLP40vujvKwr/vvzwR8sKPoo5ODl6/yT1vsmqvROV+RMV+VPUuyfFFMxLLW3WdPxhyCP2Ze91keRlBGkPJ9pFRPsfovuJdC3qNVyzWixWs9FzMFTJLl+6pFQqFUrF9m3be1hVPhpqVi9aW1evXh0ZGalQKI4ePUp30ZpngOZJ9c+7eZYeOWL1cDx6zOFDh5RKpUKhYMyz+vLlqKioyMjItSkp+o4Osau+0dCgVqsjIyMTExOfPH5stVj0HR0ZGRkKhYLWPK1c86RnadvaVqxYoVAo4uPjBbUWQRAEQRAEGbLAPEHg+GOefW/fjrRIrL6IPHDrH9lX5mw8Nzv97Oz0qs/TTn2+7tSMlOMz1roe71xVPn3V0Wkry6avKp+2siw0qfTThCOfrCj6+4rDH8f9+tGyg1NiDn4UfXBK7IGPVxRKV5dcbdS+NtcQUzR5tfS9bolTO9t+Im0LSdtCYvz3m65yq9VqtZo9B2M2m61W6+XLl5VKpVKh3LZtW09PD+8Yi8VitVrpMrZ0euq+ffvors7OzqysLLd5uhrkte82z/x8usIQ3WswGGjNMyoqqra2lumLOZExz/Lycs/G6cGFhYV0JaEjR47Q7cw6QDk5OZ6Xw7Tz+PHj5XHL6VJDN27coNfornnW11utVpPJxDtLq9UuX76crk708OFDz1EBAAAAAIAhA+YJAqeusdHn12zYPXMg5vmv7TVzMi7Mcq4qdPrztJMz1x6fmVI5fc2x6asrpq0un5Z8/Iu0U/Myz/5r87kfss5+n3nm+02n56ef/C79xHfrj3+3rvK7dce/XX/8x7QTibsvNz3S9/Y0/GlKJN2RpP1novsv0f6HvFhI2haS1n+Rlh+I+Ye+roNWq9W3eSqFzZPS2dm5efNmOq91x44d1PpGiHk6Z9uWlNDthw4doi6am5vLNOh5YktLy4oVK2QymVwuv3z5stVv81yxYoVcLo+Pj3/06JHnqAAAAAAAwJAB8wSBM1rN02a1es9XGRdmbzw3Z8PZL9JOfZZ6cubaEzPXHneuKrS6fHrqyYVbzpVefnr7afv9Vt3jNt2jNt2jVu2jVt2jFt2jFt3j1vbHLbpHLe0vml86uh/2GUreGeNIVyTR/Uy0i4juP6R1AXnxA2n9nrR+R5q/I4b5v3fm2axWm9XiORiL2Wxjmef2bdt6enoEh93d1bVlyxb6Qstt27YZDQab1arv6KDmqVapbt28yTTIa/8cyzzpy1jpXiPLPK/V1tqsVqvFwj6xxGWeZWVlYo0XMeZZVEK3//rrr3Scedu3C14LPbGVZZ7Vly/brNaOV6/Y5mmzWs0mE+8sHds8Hz70HBWCIAiCIAgyZIF5gsCpa2z0+TUbds8ciHl+l1M9iy5mS1cVWnt85trj0+kk29RT8Qeutui6Xhvq/jDufmfd9s6y9Z0l952V+efWd+bN7yzZ70xZ74zr3tlWEYeavPqZ6JaQtv+Qth9J27/Jix9Iy3ek9TvS/E/y/J+k55+/dwyCeXbq9dnZ2XK5XC6P2pGXR5WsU6/PHiTzrK2psYmbZ3l5uWfj9OAiVs2Tbj9y5IhSoYyKitq6dSs1ZF7oiU+fPo2Li5PJZJGRkTcaGujlZMA8EQRBEARBRk9gniBwfJrnsqSkERjf5vnfXddmbTw/a/3pz1JPfLb2xIw1ldOTK2YkH52+5uTiredfdnT3GSv+6ltD3iQTxyrSu4r0ria9q4ljFeldSRwJxL6c2OKINZqYVEQvc86wpU91vlhAWr4nzd+S5m+IZh55HkaehZGuf/R17LdZrTargCBxzFMhbJ7U0162t6elpUVGRsrlin1799Jd9DUkcrlcpVTevHHDNiDzpN7ovebpl3kWO83zwvnzUVFRS5cuXbt2badez26WfSJ9P8rSpUtXrFhBHVLf0ZGZkQHzRBAEQRAEGS2BeYLA8WmeIzMSmy+SSxtnZ1z6IvXEZ6knZqypnLa6Yvrqo9NWH5VuqDp9vfWNqZb8mUq640lnPOlc4Y4+lnTEkFcq8kpBXkaRl0uJ7meicy0m9II+1TmftHxLNPNI8zzy7EvyXEqeSUnHl6/1lTabzWY1ew7GYrHYbDZqngqlIi8vr6enh3eM1Wq12WzPnj2Lj4+Pioqi7zihu7q6uqh5qtXqmzdvMgfz2qfv83Sap8VCN9psNqPRSGuekZGRtbW17NPpMSUlJW7zdG3kDayoqIh5dSfd/uDBA5VKtXTpUqVS+eTJE89Rmc1mm8128eJFlUoVFRW1cePGjo4Om82m1+sz2ObpOpI9JJ1Ox37O03NUAAAAAABgyKhrbESQwDPcX+SB4Ns891x4ODvj8hepJ2asqZyx5ti01Uenry6fkXzsX1svPmnvfGfZTt4kE/0K0rWCdMeTzuWkcznRx5KOaPJKRV7KyculpD2C6MKJdjFp+4m0/eh6sHM+aaGlzq/I83+QZ3PI09lE8/l73T97e5psNpvNKiBIbPNUKVXMCkOex9TW1qpUKplMplIpG12/m66uLjoFV61WX7161cZVNXqu1Wo9d+6cWq1WKBSe5pmZlUm9saamxhaYeZaUlNBjuru7N2/eLJfL5XL5yZMnPU80mUw2m23fvn30mMLCQqvVarFYurq6YJ4AAAAAAACAkY9v87zQ1CLNuPDZ2uMz1hybtroidNXRaavKPk87qfil9mWn7i9rOrEmka540rWCdK0gXcuJfhnRR5MOJXnl0s72cKJbRLT/cc6wbf2etHxHWr4mzfOI5ivyXEqezSZPvyBPviDame90CrtZb7PZbDar52DY5qlUKHfs2EG3m81mqohU0mw229atW+lLMjds2MD4mNFozMvLo+K3e/du2qDRaGTOpe1fuHBBzDy3bt1KT7906ZLVamW6Y8yTyqGgedIfi4uL6Uq21DyNRqPNZrt48SJtNjU1Va/X0yuiK1PRLjQaTVJSkkIhj49fwQhkd3f3pk2bFApFTExMQ0ODTdw86VtVYJ4AAAAAAACAYUFit9m852WnYcmums/Wn5mRXBG6snxq0pGpiUdmph1ftq3W8Er33raemBNI1wrSGUc6aalTSV7KSbvLObWLSdt/yAvqnP8iLd+R5m+I5p/keRh59iV5Sp3zc/JkBnk4nbRP7+vYZ7fZ7Daz4GCsFovdZqu+fJm+ADM+Pv7ihQsdr16xj7GYzUfLy5cuXRoZGRkdHV1fV2e32ejcYrvNdvLESbVaHRkZqVarL1y4YDaZ2OeajMZ7d+9mZmZGRUWpVKr8/Hyb1Uo7pS0UHDhIvbGoqIieQpulxzA1z6Pl5cxGJvRI92zboiI6WpvV2tPdnZOTo1AooqKifi0o4I3K0NOzIy9PLpcrFIrKykp6lt1m62bVPBvq65nt7HvFrnk+fvTIc1QIgiAIgiAIgiDBjm/ztNts+y89/HzT5ZnJR0NXln6aeGRqYvHMtcdictnmuZzoY1ilzkjyMoK0LyHaxfxSJ11MSEO1cw55+gV5MpM8nk4eTieaaX+1ze81N9utVrtV2I4Y85TL5REREVFRUTExMRs3bqyoqLh969aD+/evX7++a+dOmUwmk8mio6NLjxxhzqIOqe/o2Jy9Wa1WL126VKFQ/PLLL7W1tffu3m1sbDx39uyOvDyVShUTE0PVND8/32qxMKfbbbbbt2/FxMRERUXFxcVdqa5+9fIle6+z5qmQU/OkG5kwx1DzpGOzmM20hWaNJjU1VaVSRUZG7t69+97du20vXrS2tNy6eZO+mFStVu/du9dkNDIWTc1ToVBER0ffvHHDzjVPeoxOq01ITKA1zyePH3uOCkEQBEEQBEEQJNjxbZ5Wi6XbYF5+8PrM9Auhq499klT28YqiGWknFVuu9LTr3tvSiWkF0ceQDiXpUJCXke/bI4huyXvtYvJqMen4D3n1I3m5gLR/T9q/I7qviXYeafuKtH5JmmcRzedEM5M8n0aeTyUvppH26W/15XabzW4TLcqxa55yuTwtLW337t0qlSouLk6tVsfFxdECIF0EqLyszGgw0KIi+/R2nW779u1KpZLOU6UnxsbGLlu2LDY2du3atXRKrUql2rt3r52lavQDXemHLn6bnp5+YP9+puXCwsLY2NjY2NjSslK7R3WR/vhrQQHt7tChQ3aXK9KWW1tatm3bplAoYmNj4+LiVq9evXrVKrVavWzZMpVKdaSkhGon02BXZ+emTZvi4uJiYmKuX79uF6l50iHFLot9cP++56gQBEEQBEEQBEGCHYndFzabzW63dxlMu87e//fmqn9uOvXPjafmpB2L31Fj7Gx/b04lxljSoSKv5ORVJHkpI+1LiO6/RLfofUfkX12qvzrlf+kj37+K+KtjyftXi9+/WvT+5Y9/6f79l/Zff7XNf//i2/dt375v/eZd6+K3neV2u91us3oZjNVqtdvt1dXV9H2eO3fuNBgMTU1NhYWFaWlpiYmJK1euTE1N3bt3b2NjIx08HT+vBZPJdPny5a1bt6a42LJlS0lJybVr1/R6/Z07d6js7d27lzmFfTfu3r17+PDhzMzMhISEHTt2MNuvX79+4MCB/fv3NzQ0MBt559bW1h48ePDAgQN1dXXsxukHg8FQW1ubn5+fmpqamJiYlJS0cePGI0eOPHr0iN0IxWAwnDx58uDBg4cOHXry5IngULu6ukpLS/fv319YWKjVaj1HBQAAAAAAAADBxrd52lmu0m0wP3mhf9rW+bC1XddhcFi17w3JpEdFXka5Hux0aifpDn/Tddphae81P+41P+01Puk1P+01P+k1PXEYHjpMj3vNT+iPvabHveZndqvJn5HwzHPbtm1Go5HuMplMWq22ra3NYDD40wilp6ens7OTd8r169dp4bSgoIB3vJ1rbj09PRaLxZ+R+wO7I5PJ9OrVq87OTna/kEYAAAAAAADAaETisNv9id1ms9v4G3st2veGlaQrirRHEN0Sovsv0S4ibT+SF/8musVZTCgAACAASURBVAXv9Il/9mT+2bX+z860PzvX/qlP/bMj+c+O5HemxL6uIwK92Kw+h2GzWh12+5XqauZ9nkaDgU5A5Y2WHun1cmyeG+nSPtXV1fR9nscqKphOecPwPN1Ly/06xrNx+mDnwFrz/xgEQRAEQRAEQZAgxV/zZGK32W1Wm81mcdjtry1t73sSSKeM6MKJdhHR/kRe/Ju0/kBavieab4n+e2KYT7q+IR1ziWkueT2XGKWkdSbpnfXnq1SH3eawmx02q8Nmddj9lSK2eSoVyu3btxsNBtbYBuJX7FOsFovDbj99+rTz1SkXLzqEzHNoAl1EEARBEARBEGRspN/m6YzN5rDbX1va/uqMI/pwol1MXvxIXvybvPiBtM4nLd+S5q/J83/+9Xzu+6f/IM1z/nrx3z90G/96sZg8nka0M/94meWw2/0XTibezTPwWMxmh92en5+vUqmWLVvW1NjocOkogiAIgiAIgiAIMrAM1DytVofd/tqq/UsfQ/SLyYuFpG0BefHD+5b5pMX13pTnX5JnX75vnv1et+C14TeH3f7acPevlu9Jz+d/vMx02O0DN88rV5yzbbfnmYzGwO+C3fXOFYfd/uD+/fj4eJVKlb5+fVdnJwqPCIIgCIIgCIIgAUbiGCB2h8PRa+34q3sF6VxEWheQ1vmkdT7RfE0088jzMPL8S/J0Nnk2h7R/8e5VjIM+JGq3/fFyJbF98XvHTofD4bDZ+t2r3e5wOKqrq5UqpVKh3LZ9m9FgHOglCNDY2Lh27dqoqCi5XF5dXc30CAAAAAAAAABgwAzYPB0Oh93hsP9h3EPsi0jLAtLyHWn++v3zMPLsS/JsDnk2izz9nDz9nDyd9v7FnLddpxw269uuC+9fSIn2szc99Q7HQMzTarU6HI4rV67Q12nm5eWZTKYALsFhs9m6u7ubNc1Xr16lk2zVarVcLq+srKSl0EAaBwAAAAAAAADgcDgkvQ5HIHlt0b7rXk3M/yKt/ySaeeRpGHn6JXky6/2jmeThDPJoGnkwlTwOff989l+6n8mLz0nP53+82tXrcDgc9gF057Dbex2Oy5cvq1SqmJiYX3bsMJmMA27HarEUHDy4du1alVoVHR0dGxurVqs3btjQUF8f4G1BEARBEARBEARBmARonvZeh+O15dUfXbvfd/6HdIQR/T9I6yzyfOb7J6Hk0VTyZCp5Hkpap5GOGaRrxl/68L6u44H0SI1Rp9WWlZZu3LhxR16eyTgQ82Sa2rFjR2xsbPKa5A3p6YcPH25oaDAajb0Oh91mG/bfDYIgCIIgCIIgyNhIoDXPXlfp8o3p4e/dhX92JP/V8d/3bXPJ8+nkyaekedZ73Tfv2qP+fLWpr+vMa4uu1+HotQ+k2umZl+3tz54+HbAiUvN82d5+//791paWrs5OZhe0E0EQBEEQBEEQZBATuHk6eh32XofV+dlqem3RvTE+eGu8+dZQ98bU9Mb87LW1222bdkvgPTrsdqtlENrhxWa10mVsh/23giAIgiAIgiAIMpYi6R007L12m/heR6/D1tvrGLzueu12u91uD7ARh8NB23E4BnNsAAAAAAAAAAAYJK97ewc5DsfrXsdrh/21w/661/G61zH4XSAIgiAIgiAIgiCjJ4Nmns7qoc1mt9lsVhqr1WKhW5gprMN+wQiCIAiCIAiCIMgQJ1Dz7HU47DabxWw2m0xGg8FkNBoNhp7u7p7ubkNPD/0n3W4xmy1ms8VsoSI67FeOIK7c2S5ThYbxk1ARQJsVW0PDUrbfHPJrqdgaGrb1aH/PunloYYDXOxJy89DCNWeGfxgIgiAIgiCIUAIyz16Hw2a1UqWkntnV1dXd1dXd1dXV2dmp13d1dnZ3dXXq9VRBqYVazGa7zTbsV44grtzZLlOF8qSlYmtA8gnzHOoI/RIRBEEQBEGQEZNAa550mVla82QXPLtc0B+NBoPRYDCbTHT+LWqeyEiKsLQcXROAycA8hzowTwRBEARBkBEdyevBgD7m2dvba3NhNpttNpvFYrHZbHYXDodjULoDYFBpdEoLl6NrVKGyQ7ecP51JYE3EXbizkX+6c1fKdnrCsVz3Z+cBzI9emnLvWrjzUAJnL7uX3KNil3Is17331qGFYSnbjx1aKNjXLff2hJ2HFoapEo4JDIN/B9w/0vF4jKS77XzDkzvdYuNj07hdplq484z7utyNv35N7z/vrrqvkXcK+5ayL9+1kfXLvbUzJXTNIWenHr903vDYF3h0jcrjdyowPNaw2bcUAAAAAGC8I3nz+jWCjMn8v//5ivdBJE7zFN94hkqgc9exXCoVzC73uS7hdH9wCUzF69f+NOXa5VQp14+N22WqUNmh269fv3n9+vbOFFfjHjmW6+7LqV7OHzln3Tq00KMvwSuqWKPiNUgP8zaG14bGpvsVDfcrHr7yfduZfjlD4vbLvkvuG8v7HXF/iZzWPO8e61fgLazfiD+/dG5H7NuFIAiCIAiCwDyRsRz/5FPAPKmfsGyHUcfXHkLC3uWKy0Y4BuW1qds7U9zS4jyS3Qtb8wRV2aN9vvm4+6pYo/Lsi6WUIhfL7OVaomi0moqG+xUNTxq7/brt7lF5OBuzy2N4wq3xL5DvzIItCMV55z1VU6gFWmQWtnEEQRAEQZDxHpgnMsbjh3w2Cq1tK6QQrHmewgrHOTJloUykHYGmPGVSXBQ9NZXTLNs82b0zDdJprixvdIuZgNNWrGFvcc1rFexdOK+uN9w//8wgeNvZw/Cml8x1uebQetQSxWvU3L5Eb52P74Z7PGK/9P45LYIgCIIgyDgLzBMZyxlwzZMb9uOXjXwnFK09qpzyybEUsaZ8mafHS18CME9PMTuTwDZPz75YA+NUg73Hj5qnuHl6DoMzY9njLwj45unZwoDMk1t8ZsYp9Evvd8sIgiAIgiDjKZI3AIxR/t//fMX7IELTdpkqNKVKbLezluXeUJUQplq4s+nNmzcVKapQ2eHbnudU5oaGpWy//ebN7cMLXQd7bcpzDH70Ityvq/3bhxfSMQj1xQzJdaQqodL3raBHOj1Q9CCj6znPDq9j5Q+DuUyPuyRGVYJ7JOyRu2+dwBXsTPH3Zrq7UIWy7qTYr8PvYQMAAAAAjEckb9+8QZDxnaY8mSo0pUrsgIoU7t5KWgRresuSDf5ZlbmhYSl5t12nu47x0ZTs8G3/euG3wznLdeTtwwtdY3j75s1bl4+9ZbkTu6+EyjcCu9405cmcZzlvlOzwbepjggPobrvQ8KSx29/b7mqZ2zXr7tHwbw4T9zWyf4mev9CqBNcFijYl9qsPy61wX7irBV+/dARBEARBEIQXmCeC+DBPuo6ryyhcRTDn8VwHcxUPuRLiPsZnUy4Tc+6isvSWaz7eDMc/83zrqsQK9cW5Io5lsftlyWogt13YPLm67r6rHtbHOoX7S+RcIKflfpgnq1+BO+b5S+f9mji/UARBEARBkPEemCeC+DDPt04Rcr2ksZInGE15MvbeN2/f8OXQ+Wxkpc+mmLmdqoRKd5nOoxfxwpqf5uncy7zPk6VY3GHw9I99lypSvI7Ev9suZp4eN8p9IvcpUFbtsTKXc3NYF8hu1m/zrErwPJH3dwFCw2MPG9qJIAiCIAjCBOaJICMyfG9EEARBEARBkFEcmCeCjIhw5pcKPG+JIAiCIAiCIKM4kr63bxEEGQFpylvKegvI0sN3hn9IYzx3dgm+vgX3H0EQBEEQZPAD80QQBEEQBEEQBEGCG5gngiAIgiAIgiAIEtxI3gIAAAAAAAAAAMEE5gkAAAAAAAAAILjAPAEAAAAAAAAABBeYJwAAAAAAAACA4CLJBwAAAAAAAAAAgomEAAAAAAAAAAAAwQTmCQAAAAAAAAAguMA8AQAAAAAAAAAEF5gnAAAAAAAAAIDgAvMEAAAAAAAAABBcYJ4AAAAAAAAAAIILzBMAAAAAAAAAQHCBeQIAAAAAAAAACC4wTwAAAAAAAAAAwQXmCQAAAAAAAAAguMA8AQAAAAAAAAAEF5gnAAAAAAAAAIDgAvMEAAAAAAAAABBcYJ4AAAAAAAAAAIILzBMAAAAAAAAAQHCBeQIAAAAAAAAACC4wTwAAAAAAAAAAwQXmCQAAAAAAAAAguMA8AQAAAAAAAAAEF5gnAAAAAAAAAIDgAvMEAAAAAAAAABBcYJ4AAAAAAAAAAIILzBMAAAAAAAAAQHAZoHn2NUcZX5S0tT7UgDHN4H7bAAAAAAAAAOOTgdY8m+c6A8YuME8AAAAAgHHCuSuNCBLUBGqe3WDsAvMEAAAAABgnnLvS+LHyFwQJXgI1zx4wdoF5AgAAAACME2CeSLATqHkawdgF5ukfD3J/loVInfky/8Fwj0eIe8Vzw2Qfxh7DbzRI3N+XPEGq+LGkORiNn0hxf8FCpDkngtEHAACAcQ/MEwl2AjVPExi7jGrzvJ+/ivWHdXYUk8PXpRx77BjU7hwtZ9TzR7B5ns4JkcpCvt15abgHMlahcjgxo0Z4N73/PuJFKftMuqZfk6I9D7tfsPZDqezDH3eeMfoeZL8OBgAAMN6AeSLBTqDmaQajk+zsbMHPbEa1eRJCHJ1NB+NV7D+s9xk1F/PTJ0tlIVLZ5JTz+kHtjrrHCDXP+n2fSmUh0eVtwz2QsUpdblyIVPbD4TaxAxydTaeykidIZSFSmfo0a0efsb6Afid9FTObDs0WM8+fD9b1+R5kvw4GAAAw3oB5IsFOoOZpYdO4YaKEzaJyi8D+iRsaLXzKF3me2LhhIvvY8kW8c0Vb4w2DjoI/NqHxcQeyqJw5i9UJMyovFyvWV/kij07LFwnfkKEgOztb8DPDaDdP4q58sv+w3ncpg9aO5BEVg1n6GdHm2VcVJZV9mntzOPo+rx4Hc0T7TmwOkcal13s96F7hl57mSQghfXW5K3zfIufpvu8k/dqP0K8iAACAkYp/5lle0k0IsZRkOrdseEQIIaT7Xjg9IPNeO/tH0Ra0G4bbgpChT6DmaWPz28aJkokbf3P+dHSxRCJZfNS9++hiiWTx4sWsQ4SP+23jxIkbf+O09tvGidxj/G7N2RhvbN7g9ztxIrtvZi+3wd82TpRwzxLu6+hiobaGjezsbMHPlDFqnoRU75wolYVIZRPWDebk0xFtnuRB7s+yqBPDUuoaF+ZJ7hV+Kd1c4f0Gi5onIcZTEWEwTwAAAMOJnzVPqpr1hfTH6npC6h9p3SZZqCWEkEfV4i3APMdvAjVPO5u7myZKJm66K/JjxWLJxE137RWLJZLFFWLnCLbGOyXA1nzBPtL52dkZZ69Hg+4NXvtiRnx300SPqxoGsrOzBT/b7fYxa54uARhP5klOpKzKvTcsPY8P8yTn1T8X3vd+iJB59p3YHJJy3q8eYJ4AAACCib+zbQu1hJD26vKPlbTCaSkpvNfuqoKGV1uI20sFA/McvwnUPB1s7m2aJJm06Z7wjxWLnT9Q9RI+RaC1isUSgSMG2prQLi9Huj67tzGfPBv0sos/dsmkSZNY4x42srOzBT9Txqx5umqerKfy+nRXS1VR0R9SI/0m9usNVU8961eOx+XZ62Z+Iw+RykLmRc9OLLyidR/ENU+qW664ncSPjvp0Vwpyvp6vEFiEhuU2jodnUqLj/xYmC5HKPpyftCBbaMAisNZKzTlB+p6e2L1gkWqCVBYSppordOE++uqo35OSMnme64pStv3wbUaR0eMmOMMSYPaVhqk+icrZU8s8e8s6N+U8cTwu37D6b2GyCQuyjzz39zIJIbyVh13fBPbAWN8N/nh2lD/kLETVp73GudINZx71a6EqAfPsO79RJWKe7K+K/G8LUlQZGZ9yBtxn0jVdOlK4IjppssL5xRBeWCvlvODB/Jvc96zC9fWe8M3qhBPPeF8E9teAF4EqLgAAgNGGv+ZJ59PSqmYhrXZW17tcdMMjwpqLW+1+DMU9/5ZrnrQ1irtSSo+hcI98dI/ZVV/obp/luoKdeozf2Sx38rDgYIRHiAwkgZrnazb3MyZJJmXcd//A/cn1w/2MSZL/VtLtlf+VMJ953M+Y5HxG0uMAsdbYn0VbcyN8KL9x+tk1UGYL52K5B/vs637GJNHLHjqys7MFPzOMUfPUV6xWhUhlIfO3uVb47Ptt39oPpTHRx1schBDHY7qI6MSU8+zHQPuayn+cLwuZn76nwdhHiOPZkQVSWcj8nZdcfzzn1zwdLfmxspCw2MV5F+8Z+/zuSH8iJTpEKp+7q8lBSJ/2WurPshCpPLyMsxyS/nTOZKl8bm4NbehRSeZkqWzC0mIfNTc3jkeFGROlshBpVubh/B2XNaY+0qe9lr5UHiKVzci704+++m6m/yQL+WnHyRYHIaTPeL98XeIEtl469caj4tp3L3epPGR+5q93jX2E6T067qzrZjgeOxeIis1JSDx4saWJOuTcfU/8vUpnR8b6XXRpn7V7XNba11K2QKqYs+GM61dDSMfVlYvlIWGJK8+0OAjpM1av/JcsJGzdftcp+os7Pw+TTVi882SLg5A+0/mdH0llE6LL+/EvCd88+3RX980NkwmZp742N3mCVDY5tvAi7e5uZcR8riq7WuP9lQRhvvbsZsUOZm7yyoP7c4ovPjP2MaOSrsi4xbqLTYVzw2Qh83MqtH3u789P+7BYEQAAjBn8XmGovKTbKXUbHjllzPXBvctpgAKf2eZZXU/YEkv1laoj2wy1G3jG6PxMjdGjQYFOOaGF2fbqcm6FVnww/I3Dr3CjNIGa5xs2DzI5xhV+nLNnUuYDz5+4Ozxbm5R5nP7PA94en625BzMp84HXjgT6ZTfi+nw8XDIp8wGzxbNBL7s4HA+XSMLDwzk3aMjJzs4W/MxmzJlnn+nZjV/XJU6QykLmp+9vYv7IXLPyW27dpq38B3417N6Wn2UhUlXiRddZzsKpW6h45qmv3fftzzurtOw/mPvR0a2DM6SykH/vq2N6Pp0zgbcs7fPyH8JkE+JPsGTUWBQvC5HK1af99oC+qiipLES6aov7PpC+izsm8szEZ1/3Cr+UymbvYmulvig+2Zd50nWeVqTXswZMF+Bl9d53YnOIW++NZzbETgiLTakegOtQn2eEue+3Xclz8++xGnL+fcR3Ba4Xcjp/Na5fVkdV1Lccd207vK7fb9dk6x+/JsnBeDpnIvfvNQghfbX53Jon6TNqLm5Z5Zd5ih/svMk/H/qN9UU4v1HFna9rLE2Sh0hl4WXMX5LQYrJqZbX/1w8AAGBE4//athseEUK0G5TlJd1OEwuvtpDue+HinhZebREQxUIt8ZyayxM85kd2rVVMZUU75YVVU2XKmOKD8Tp5GOlHAjXPt2weZk2STMp6+NaDh1meRUDngcfDJcLnsFo7Hi6RSMKP+9GaxwiYDaJj89Iv76yHWZMkk8LDxRp0b/Da1/Fw1lX5N6LhYgyZJxPF5IUpqvyL3EmSbYdXKELmrd0tLkvGiswJUu77MO8d+XYeu3DKMU/9xZ1z1YW3+VMxfXfkfPEj2w2oroRtO+PacCtvhWfpj77VQ/R9kgIIPX7p8SSh776MJ8KlMqZ0Kd4R1zyNpyLCOBflbkq6bn+bawu9G34+BumdjvPq+bIQqXxu/j3d6ZxPeLVKKvzsro2XEhbIQ8KSd9wjxHUf2P5vPLvjk7B+1ZkFap6mhkNCNU/nDGH+g5qCz3nSjX6Yp9jBgjfZowXnkNizaukXvt8laAAAACMV/83TZXTV9YyV0Wm3mffaXVtoOZFHfeEvbFEUfCiUv7E/5ineqUc4VVOhfsU3IgNOoOb5O5vH2ZMlk7Mf/87ncfZkyZKTYkeeXCKRcE57nD15cvZjbmsnlzDH+NGaezezS2xsnrCP5J11colE4hosd9fj7MkSsbNE7xDrokYkY8g8/S1M9Rk110sOhC9VTeDK0qUMVYhUFhJ/wstrWFzmeU93YtsnYUmZt72V5sQ6cirQtzvOu872qHm27Y8WqpuJVM/E8cc8/emr77d852sqP5yfoso/c73FIdQR1zxdj9oKxcPDB8U8Cemr3zdDKgsJi568OOdEB2eXs4DJKjVzcd6HQF9LI7TC0KUMj+c8neVWj3LicJqns+bprgmj5gkAAGOOfrzPkxpmtXthIedSQ9Vat8uJzk0dupqneOjpFtYDn6h5DkUCNc8/2DzJniyZnP3kDx4nl0gkS0562/gkezK7gEnb4LVGj1lysr+tOZvgdSGRSASaoQ2x9npckVOTn3g2yGpMrC/PoT+hwupxy0YG48g8+3Q3SnYvWKT68JvVqvyLdzrPqKWyEGnyjkfO/c4lebwqED1m4uLUBT9Hh0hlIfP5euNPR4QYL2UnTpDK5+Ze0zHPXobFJpzlzXJkz3scGP6Yp5999emuFv78I7MkkmIOZ5kiIfOktiNqetzDBsk8Cem7khUj+Ktxfk9EF6cVKUL2Fz/XtnUe5vFk7HCaJyH3jv04XxYyP/PXhw7mcd8PFUf6UfIFAAAwsumHeTKr+PDXDSKsRWvFnu0UeSzTz+c8vZun6HZO3Msgcd4BIz4Y/sbhV7hRmkDN808wdhkv5kmXupHKJqdU6Zy+xLeyM+vkftY8Z+9o6nM1OGFp4W/swqcfHdHjWo7nfMRMD+avsOqsvwX8zox+1Dz97MvR2XQqb+MnYTLuMkVeap6+/kZgcM2zoypqcWYCXdVpdRV7yabH+5K9mvCTHUuDVfNk0bxHuSr3HiGPiudKZSHSpC1NgqcPk3kSQhxNWUudpekJ38T/nH9N562uDwAAYJTRH/N0vtWTvdar5xbOMrNuAwxwbVvv5inWKSvcN45yXk+KtW2DnEDN8x0Yu4wT8zSWZYRwJ7h6WplzNibnGD6cFYacTxXKvtzlXsbGn44IIfrT2z75adcV8dd10McsvWuwH/j1nKfPvu7nr/qphLPurnNS69Lix5yOeM950kc649LriTcG0Tz77uUq1uY29RHjpTjXA5/u34PThN0LCPFwTrdWlgb0r4RX8+yr3jnZeZfuZPwkVGoeXvPsu7dDofipELIJAABjln6ZJ4IMIIGa56B+4cHIYpyYp/OY8EO/MZuc676yzjKeV38rC5HKfzjczD63r6nw3+sv0ofZeWvb9jUd+lIqC5FGq0/r+9ERLa99u7n4mdiCPc71ZvkLwxLS11T4feo5gSfrhfHLPH32dT9/lcfk1fNqqWxCCuPXXta25a2aSwjRn1i3Locplw6aeepPpMQyb6bpq945WSoLCUvOda/r65xPOzmjhnOdHefjYgvvEebORK/krqyrP73tp71+Tzj1Zp7N+6PlIVL6HlSiObxugpS33uxwm+fZbROksi93NHT16xWmAAAARg8wTyTYgXkCUUa7efYZNcX01Z3SVamXNSYRk3N6iDRafULXR4ijpWZzxnr6PsPUWvefsvWnt30SJgsJi40quW/qI6TP+Pzywe8XbXNKF317p1Q2IfqI++2ddOmdsOT0yy0OfztyKhkr8r8tWD41KmdPLeNofb8dTp8slYXMT891Xpej5XLhjz9nFj31syLVZ7qaP0MqC5GqosqZFYH6dMc201fFZDYw3uujL6ooExZszq+j7/vsur5/3USO1DkreF/uuMn5FdD3Z0rln687c6eTeRfoym9z612CaLyyZUWI1JeH+7xU4/1fV8dO+NfOi+5fpu4gXTnJ+dQiIYT0NRV/O08WIlV8m+d8c2nXncqoRWk7mtjvYpWFzFubcdm1v2TzTHXxb36OzNF1x/kOVdnklDPsZZgcnY8v5tJVmhirdL4GZnJs6fVOB6HflsQVE1nfHzoqXUkGXaQq87pbCV1LMW8u5qz2JHQw+yazvgjl9F+cnw/WMzfe+XcQrMyLnrowaUF2lb9fOgAAACMbmCcS7MA8gSij2jw93qfi5fm6vt9Kc+Z+I2c/vXa/JHPaPPqY5SHm2T7HwzMp0UmT59F1XJN+znO9nYX/nkamvqcvipezVoL1s6OuusJtX33tuehrdJx7nSGiv12ZEh3/tzDnQ3cLss888rsY5VwwiUnKeabox4T9bKeXvoxlGV9uLGRuS8i86NnRu7kPphL9xd30qkPCVJ+Er0uranPd+Gdn83O+nq9wPdGas+eqjlspZUV0+R/vsNtx/l54l898K/q01/akpHzi/AXFfr2h8gbndax9uqulqqjYv4XRvw5ISSi57e/cU1pX9B12PVNfW+C8ORO+iV+QXfX0Hn3+kzlS/FfWd29/4ooPpfSLuvzr+Iqbwgfzb7L6tJcvM3E8vLx5eYznsPv3ahkAAAAjFZgnEuwM0DzfvVBaX+S3aRo0YEwzuP9FAz7paypfvEA+Obbworta1WfSuWpigT7bCcDA0J/PXvlhWGLcsfvuwrWj68Wdyoj5fjyvCwAAYDQA80SCnYHWPAEAgw+dmOp82I8DXZLHvWwPAEMHnb4ruLRvXW5ciFQed3boBwUAAGCQOXelkVyegCDBC8wTgJHDpbgwYfPsq83/lPOqknEMfzqo1wzau0DHNfStM0Lmqf81VhYSllmKWjwAAIx+YJ5IsAPzBGDk4Fxe6MOfd5TfaXdOa3R03ak6+ON82YcKvxezAWBwocsLhcUuzq951EnngfeZnt34dV3ihLDYuNN6H6cDAAAYDcA8kWAH5gnAiMLx6NiB8KjlzgV76AqiURmb2M/XATDk9Gmv7UlfN3uBaoJ7yeWkBemlF1vwlhUAABgjnLvS+PaNFUGCF5gnAAAAAAAA4x2YJxLswDwBAAAAAAAY78A8kWAH5gkAAAAAAMB4B+aJBDswTwAAAAAAAMY7ME8k2AnYPNurl4Qlh3KSV9g+GF//YaCrMDo5vWG4RwEAAAAAAMDQMjbMU9OsGfYx4OrEMijmWXqdvaWhNJS3ZdQA8wQAAAAAAOOR/pinpkClCg3Lr+ZsrEsLU4Vm1QXLW2ryPXoUGFV4kXc3q0sLSy9oZn/wN9VZqrQab/N4NAAAIABJREFUP3sJRtj99nvwIyRBME/yIH20lj1hngAAAAAAYDzSz5on3zOrs1ShqkpN8LxlcMyTPf5+yJumKN11sSPBPK1vmyvDg3q3g5Pg1Dy3PHDuii5Nj052lkDd83Kpl7I0r716SZjrc0NpaHS1ln4QmL77IN25UbCs2lUYnVdY5jqRDoPTFGsja56wyzZZQ2ooDQ1LXlLW5fv0LdUsXxUanvCFAAAAAAAAMFLo92zbmvxQRt7Yn50VUVVoGNtF69LCaM2QOZ5qpKZAlV5QlB8apgoVUMG6NNpOGD2GMU/PLlhbqCI2V4aHuba4uxaoeWqK0kOZXoRdtC6N27WIeQpeeL+uQuxGeVzdG2t11rAI8PCbJ+85T5ewsX2SPEhnu2VY6XVCtGV5TpFrKF0SnUfP0pbRD6zCKeOiLDPUluW5NrLpKmRElzxId46E1zVtlrXRLc+u9t2HeY6cf7q2LM/lroLDE7wQAAAAAAAARhADeM7TVedky5imQMWxI5dTeTFPsWIpb36pin0KI12aonS2fLKPZ7qrzmLO9TBPdilVpKzKKnh6MU9vF+483inDrAvv543i9FuTH9wi80g1T275sb16CXUt5gP/MJeMtVcvia7WEnJ9S15hQ/WSLQ9Y8sbyPeG+BOf0cqbLus3WjessYQnsKoxOTi9jDZuP4OmuoQoPT+hCAAAAAAAAGEkMaIWhurQwVbgq3a1AzZXhHHljPMpvoXrjeQz3R74fagpUvp7AdJ/i1TyFw2tWpBexC+f6oaYo3dndINyo0fe0Z5Ce8/QwMY6qsfUyr7C9qzC69Dp5kB7G/NPdDmc2LL++6sM83Z1yTswrbPdaMo2uvs5TVh+nuzoVHZ7HhQAAAAAAADCSGODatpx5tp6FOMaXvAmVezsrrGImR+1Yk2PdCS/SiLgZc4yIebImsgoOgz9yMfMUuXBuvZTrz/2/Udx+RW/diE0wVxhi7xIpV17fkpxexqp8lpV6VClZi+UK9MVDqObJLr36U/NsIJyCqu/TBWueQoziVX8BAAAAAMBYZoDmyavdDY15+js71/Wjl5qn6/TqLLFHPXlHjizzHF2Peg6+ebrrgXzb5D/nST9znvB0feb4nvt43qJEnhbnLFq6HrBkHtp0Hnl9S7LIc54eix5xFjrydrrgc57u4QlfCAAAAAAAACOIwTHPAU0iFS7c+TvbVsjEeF7nh3mKu5x/Nc9hmG07TmuevBWGBOucnmvbujd6rN/D/OhlbVvBRzG7CqOT07eUchY6ci47RLc84C2oK7q2LT3L9eipt9O3lKYLTKz1eSEAAAAAAACMFAbHPEUXzmFvZ78O1Is+sU/hrzDk1jn3dF+ueTKjcq7rwxNOoec8myvDfetof1cY8rZOUn9v1Lh/znNkMSwv5By97y8FAAAAAACAkEEzT8aXvL5cpIY5y3vhjmlK/H0kLPtyPgKaVffWPXuWmhu7osivebKOFJ/3y13blv+gKUcUfb1Vxb2rXzeKc3Vv34zPtW1HFkNlnphDCwAAAAAAxhADNM9xkcGrLg6eLo7L93mOLIau5kkf78QcWgAAAAAAMAaAeXoJf6Eg/8NZ+3fw1gRqrgwfbQXPt2POPAEAAAAAAAD9pl/m6flek7EUoUt2zgoe9rGFhqlG4xOeME8AAAAAAAAAIah5IsFPQObZCkYJg/WfJAAAAAAAMCaBeSLBDmqeYEyiyZki8WBKjmbAjQ303GCjeThFcj7QsWlypkgiqoZxAIOF/xcyuMMO5AZW1Usk9VW8IWl0VZ5jE+lFk3NeIimXSM7nVLlaCOK3wpIzpVwi4YXpy5IzpXxKjsXjAsslETqPATsjeuPcV6GL4Lbgara+SnRI3GbpGHz2CAAA4xuYJxLswDzBmERAFjU5UyQD0wOYZ7AHMFgEciHD1a/boJjWRG6pcC+6CE+VCrJ58txSk3OeLYGcvVX1Es5IqCWyrreqXiLxkFX+VegihGVSpFMuVRHcHmlrUx6OkO8sAACMHGCeSLAD8wRjEkFZrIoYmHrCPIM9gMFiHJqn4MFDa54s++Xu9bw0zy1UXAU9kGueETkPp7AP8888RRr3IasAADA+gXkiwU7A5tlevcT5cpHkAN4yMnRvQ/HFgEbSXr2kv6/0HMApoB/4Mk/ubFzWkawdzJ+62Y1VRbh3iTZCD5JIJFNyqth/fGefINg6+woeTpHU5zjnJXrMKmRmHnIcgz3tkPXne83DKd6nGooqjfgAmPb7PwD3n/hFBzaIF8J3DGeBzsewPQ3K3V1VhMfMT1HzFLkQVxFPIjmfk8OdbVvlvka+Gnn2wr4hETr37yJ43wr/zVNAMvvpezzzrCJVEYJa66VZS84Ukbm1Qg4MAADjHJgnEuwMinlyDaqhtP/yOcrNE4w4BHSuKoLxPU7xkzULlz0hl6epU3I0vAm7Yo1URUjEPdV1gu8yKhUDt+FYcqYwP7I+u/90zj6AVerhlb80D6cITM4UM0+xAQi2L3IAdzqoe2am6MAG+UK4VS+XpfgaNvusqojyKVPOu9xGSGa8PBIpckNcrVEF5d6QAdc8BVoY7G+FkOaxprO69nJd3YXQxGAveJgn/dsQ179/fpinl9rviKrVAwDAyADmiQQ7QTDPgcjbyPG9kTMSEAiCKwwx2qfxeACUEUshHaTbq3KmsAubYo1wp/S6dZM/1dfX1F+eDPBKNJ7L0vBrOEJ/WBftS9Q8RQfAad/7ACwafrOMHQkNLCgXIu5mvruz5Ew5n5NTz3I2j2EI9ivWMne7gIoPonkO+s0UXs6Hacq1d8rDnIhyCe8qhHTXY40iwePdyqrJOe9RUxUYkvMYb3rZTw0GAIBxAMwTCXaCbJ4Npe5ZuFsesE5xbnQ5Hv+UJWVdvk/fUs2yxAfpziNFprC6m3LVY9kjd3/uKoxOTt/iPNg5DLqxjOn3AWsMD/hNeXbkV+8CewvL8rjDAP7jx6OZzJRYZqqsmAwKzcAVa4TfseuP7/1ebJf3h+aqes7jah6OwVsvlP3n76oIjzm6Ahfo4wFC0fb9GIBz/B6aITiwwb8QVk3Ms+gn3p2rtqmhjxfqIiT1VWLPDYrVWoVa5rfASGAQzDOoN1MIS84UZvEe9meKiOyJXq+AeRKii+BL9YBqnkw7AAAAXPTHPDUFKlVoWH41Z2NdWpgqNKtu2PWGm7q0MFVazbAPA7G+DdpsW7rlQXoY2yepVrE28nyvgTdT18fp2rI8l7u6xVVblhcaXa3lj/JBOtNsQ6nzAHHzdLXA9MXfyGohr7CdfbpQRz56511m6XXnXrZ+44nQ/uLdPKkvuvaLlCu5jUkiqjjzaMUa8Wae/VqlaADm6WO5TubZQv9Kdp7m6XUZGPEB0H497EhkYIN/IYS5eyxF8eO+OZ/nrKqXROhcIioiOb5n+YpvD7Z5DvLN9G2evOd4WQeL3T0BT+bOiPaYsE1/L3jOEwAABpV+1jz5nlmdpQpVVWqG220ExwnzHCEZshWGXPbl9jE2TFFR7AFRwdNdzsaxX5bmcU73mEPrpebpOvL6FlrVZG8U+iyokX72Ljj4dtatwFpEA8Gr6FVFcPYxQul9tq2Gfah4Izx9ZX7kaqsfV+BhnvwfPWfb+lPDEXwJhx+Lpoq173MAPGcWHSd7MuqgXojzYLp4j8fCSF66q6qns0aZeZ6SiHrhQpnobFuRG+J94vQgz7Yd3JvZH/N0FX4FnvIVuwTh7bzhueY/+7m2rYBhYm1bAAAQoN+zbWvyQ8PSC5o9PjsroqrQMLaLcg2wJt9VMtUUqNILivJDw1SsFphT0gtqKsNpU+wSazOzURXKbpbZLtgv3UttWawFatR0MEX5rE4FL8qqKUoPZY53Db46SxVepBl2zRuBCcZsW95ejpGK1CSdRcXrZXnuWbW+T2eLnz/qy53i64d5ap3j8d88hTry3jvHpYUahHkOBF/myalVMqVL9iJAvIWHnMdrmIc9RRvxusIQMyafIsr/47h/KwwxjscoB89zhF/C4c/rOkTa92sAbDUq9zWwwb4Q2kyE2JrAIt0Rwq/W0gnDwoVf8UciBVrWRbhHIrTCkOis1IGuMDSYN7N/5kk8XqfJf7umt7sqfkOck7fxPk8AABhMBvCcp6vOqSlQMa6lKVC5a6GsQqgX8xQrllIJdLqfpijd9ZnTVHWWymM7ezyujc2V4e6zvLXgPNGppu5BMjKpKUp3DriGpabsz4hIgmme7MKdPzXPBsKpWPo+XbDm6QvOjFbfNc8lZV39NE+Pjrz3LlrzhHkGgo/JrazHM6fkaNhlSl9vVeG5p3AjrLeq5HisgMt/xtPLW1V4MtCvt6rwypXel3Lx80WRQu37MQD3I4WS8zkalkWIDmxQL4R1LmvpJz/uGx25W1HYa9L62a9Yy+JvVdGw7pg/727xYZ7iYxjgzey3eQqYHqdr8WV+vKq4wIK6XvCzRwAAGN8MaIWhurQwVbgq3a2OzZXhHAFjHM+beYpUCHkTZUXmzTJNCbsfPYullJ5ht8CvZwq2rClQqdJqYJv9TjDNk6Ve17ckizznSTdyVxiibunrdMHnPIXHw5ZYocdQtWV5oSzzZD2K6dG+d/MU7Eh0o/fnPGGeYwLepNyRiRdhG10M14UMTb9DfHVj5lsBAADAPwa4ti1nni1f3lhi6c08RZ7DrEvjzL/lOSozLdZZmXSXIvmN8GfDemuBvUKSa5CsKbXuhBdp2FNw8SipPwnqbNuuwuhk1+qsD7hyKL62LT3LNcfV2+lbStO5yxGJT7UVXnJW6148tjrd59q2ftY8B29tW5jnqIQzjZbzDs+Ry5hxDJjn6O0OAADAcDNA8+QVOYfCPJ3G6LRQth+KmKezPsl9+FO4BTHz9Lp4UnWWmNwinARsnsOJ4GJCAAwznBeojIo/uo8Zx4B5jt7uAAAADDeDY54Dmm0rbp5Cs215cuvXbFsrp2TqpQW/ZtsKxsu0YcSZ0WaewvNmAQAAAAAAAANncMxTdIUh9nb260B9mCejfO6m2B7oXAeIFhvdpsqqXrL0lZkYLNoCf2ki4WWQRNtBzdNHRpt5sqbIik6sBWD009jY2NjYyPsxGFuGfQDBvpCx0a/39ofyooJ3J4d3CwAAgEEyT6vYC0g4j1zWMGf5qnlm5Xs25ZrdSs3Q470pnFeweCxjq6rUeGmB91YVd6esi+K+QMXz1Sx4q4pYRp95AgAAAAAAAAaXAZpnECOymO2Qhf/MKhJoYJ4AAAAAAACMd2Ce3HV68dzm4Ccg82wFo4TB+k8SAAAAAAAYk8A833JfoALtHPSg5gkAAAAAAMB4Z+SZJzLWAvMEAAAAAABgvAPzRIIdmCcAAAAAAADjHZgnEuzAPAEAAAAAABjvwDyRYCdg82yvXhJWet2fjSOQwRonq53rW5JdrxsdDXcAAAAAAAAAmCcS/ATHPAd2ytD76uD3+CA9LK+wfTBbBAAAAAAAINjAPJFgB+Y5qD2OlmIvAAAAAAAALGCeSLAT/Nm2DaWu2ae0GPggnfMjA3d7e/WS6NL0aNec1fbqJby97k67CqOT0xvYLYi4n7sRerzYOJNDtzwgwoMX2UjbYbdfxh6hx8B4VyfYCwAAAAAAAEMFzBMJdoJtnqzZpw2lodHVWrFTeNvbq5cwfkgepDOfG0pDw0qvu22TWly1lrVFW5bn7IgDqxGmI8442V0wkuwxeO9XJNCy0MD4V+fZCwAAAAAAAEPHcJpnc1118/B7ERLsDIF5Morl9RTiaZ7ciqLzIKenacvyaGVSW5a3pKxL8BgOglInPBLmdKHBe78ibwrKapl9dcK9AAAAAAAAMHQMm3k2V4aHpRfAPMdBhmBtW2auqdAcV7GzePNg3dLoKiG6S52MyyW7p8t6mKdwIdSjyupxusfgvV+R8AePgfHvgGAvAAAAAAAADBEwTyTYGcK3qjgnyvbfPEXqmde35BU2UP/0Y2kf7zVPfhFSqGTqzxX5qHkKXanPXgAAAAAAAAgy/TZPaow1leFhqtAwVWiYKq2G2aspUDk3hoblV3NOYbar0mo4W8KLNKLnNleGh+UXFKXzG+RGU5Qe6pbYujTBNrPqWKeIbUeCkiCbJ9voOJ4mtJSOtxm2vOc8mc/JS8q6CCGE9+Sn8Bxa9gHc2iOr2etb2JVJr4P3xzwFByY2rxjmCQAAAAAAhoMBmacqVFWpeWN967Q+6oSaApVb5DRF6c5jeLXN5spwt3wy272c65ccVmc5D2M+cNusS3Mbsth2JFgZFPNkzyZN5j91KbBwa1dhtODMUtZ2nj3y1rZ18iBdeM6qyAqx3ta2dXYdGpa8pOyB2xX7tbat4AfBgfGuDmvbAgAAAACAYWVg5um2NUYga/K5ZUmX1DVXhguWK9nm6e1c/8zQXYll10uFZvNilu+QJ2DzBAAAAAAAAIxyBjjbtpn/o8Y5J5YTOuu1OktoaiurHdFz+2OJtBG3pvJt1td2JGiBeQIAAAAAADDeGUzzdE3BFUldGvsxTp55Cp7bH/N0+i0jtzDPEROYJwAAAAAAAOOdwTLPtzX5oX5ZInsmLXu2bWAzY50+yXpuE7NtR0xgnmBMosmZIhEiomqAjU3J0Qz6IAepC01VVVDHJtxp8O/JoDNMY3Z9F4f1dg3X7yvI/YreW+ZfimH8ogbjX+pArkuwzWDcn+G651URXv8LT78s3AOEto0LfH6R+vlLHKL/yvXr/+z6e2k+vj8DYhT+H+WgmSdduYcpXTIyyasxuo/3WPXH81x/LZHVlLs79kpC/nxGghWYJxiTDOp/70fy/3mMUaMICsMz5mD8cab/jMbfl29E7i37YkfjhfvzJ+b+XtdQ3ocRap5OPWKPrCpimP9GaHgY/H9BhuS/csH+zsM8CSGDaZ5W7ptRWMfU5LMe4HRv586PFTrXP/OszmJZq6dY4q0qw52AzLMVjBIG6z9J/5+9d/2N47rzPuvvmP9gMQ4YQQ08ekFgn4X8IgCBGc0z8QTQpIMQjbnIBAFlN7KcIdbIuhVA1LBHFpN9PAHHcLAUxk0O7CFs9UaO0pFoWlQmJjc2TVlS05JIymZaN1BySDsmJda+qKpT516nqqu6Lv39oF6wqk6dS1V1d334O+dUfoB5FrTcTkilzhk5URmpRrwkYWhZAOYZDQNzaNVKfhpmpZeI/QPSnSsO8+wKoc0TC5aQC2KeoJAEfd+zvXGplNQO8hvkZFar6PrscmlIjq1ayarU3Eyd49RFUMfIihIOpDbwjXUybLAJZCVLTwX3E9yqlfg2a86JJEP+clCPfKrGmlwspn7Kk8w8aAadZFVZ7HbFAUL9JTtVV5+rf0Au2tMS7R4OeY3EOktPkeqccxVrSPYoT4L+xuE+FLqGB917mfpQm7dLvDECvyhakgMV33JZ+6A1/MtTMzGHRsXLgP2WC7yCil+V7nzTSuvQ8ZeS7kYyvzGifcuZnzdptVWliKdO3zTl/WPy5ZCxz0Lg59cMmCeWpBeYJygkevNsCL8w1C+Hu4NK43yhMz93qp9zIR9nO/f0QefrJ3MKEP4p75arqZsqPCL8REuaoDgVwmb5c4Bxhmw1yZqqsTSqiyVURn6SuVOrP8mKsiQPf5Rs6esvPnnIr77qSSFkVTu4h8NdI67OqlMkP+dC2/UfruBPjbolyvwNr13WPtSB7TK7h8U8lTe5cEIy9EGje8s6CmHwvO0c1DD8YJqYZ9LftLI6xPWlpLqRQt8YIb/lTM9byFL49NqmKe8f4y+H7HwWTC6TGWHNU3z9STGW1PWswAvMExQS94eMw3vea7X4tNLIHJMZ+xMjf/6QpOG2c//iJqskPd/hx1s3eRgNqI+0eopTwT8Hy2UvRIb8s462sUwOqhqqKxN4DpUJNJWX/Ygb1Z+qsO7qK54SolS1k3vY+BpJMpS1QJWPqu3SigV+alSFavI3vXZZ+1AHtSvKjaG9yTUnJPUPmiRqafKwzWmO8Q1m+s0f+zetyjzj+FLS3eShboyQ33KG5y1sKXx6bdNU90+EL4fUPwsml8mMiDHPjxa/mn/vT29N/+nVn3196uTX//D3X//D33/9j3+fuuRgyeDSsXmuNwcH6nMmGxOnPTk8Up3vdqkgk6iesyhILxvyEKIa5mH6/EFvVDxcNipMKuG3UGrMpVrLtG6GdRZrJeq590Mm/0ULnaHkn7PKxorIaqiqjDLbwJOsLsvfRp0Ko/pzT0vaqy8Suqqd3MOhrpGQg/QUMQ9eJm1XmWeo8yZVaHZX6GvnNTErH+qwH0CDPOVXUF2x1D9ofJvMH75Fb4l8c6b3TRvPl5LObCPdGNFOZthTrSrF5NTR96fs/onw5ZD6Z8HoMpmhM0+ZXu4eOKBaPjp/fmFhYWHBz3DBI0dbsMS+JGOesR9iBMwTEPTm6XxFCz+9GTFPab2TMk/FqbDJz7DiaS5Chm7bJXqjRZ2hojLKbANPcnBZ5MddF7JS1i2aeYaqakfmGeYaae9U//Eny+YZ6tp5TcvKhzrsB9Dwi8K2+SuoTpz6By1X5hn7Ny3TmOhfSgbmKS1ImWExzDPkl0PqnwVV+giozPPrf9RJprj86f96KXXDwZLNBeYJCon2+5n70SJjPaJZnL9R1vlQfEjlV8WOeYYPiGG2q1ZVp4K0oaZ4mIuSYaNiOcOrvAxVjaXRZaioTOA5VCUwKcvb4XX2C6o/97Skv/ryosJUtZN7mORrco0CnoCknc0M2q4yz1DnzeTB2vTaZfVDHfYDGLaswF6aYsPFZEl/0Ey6XEqRHBj15kzrm1bVpLBfSiHMky1IlWG0kxnBPKWlqNJLm6a6f8KeQ80hqfzoMI0JjTLmOf+euXbuHDz4ZftO6oaDJZtL8r1t5+v9AyP9AyP9A+OT67ZtL1WZVZr25PD45JSXfmzJ5nOgNq43B72Nnm1S5jlf7x8YGZxqBx8+1qR8ldSNahFff5ALgsyT+d0l/3GknzSpv43Nkz5AfmxwEa1aiZU1fd1UPzDmz0PyUyG0yTB/bYbuP2O5kTWSxlJoM5RXRpVt4ElWlcWd4+CLpaqb2Q0mHB+iqp3cw6QEk2skefCSnSLuXEWsWNjzRtVGmb/htcvSh9qkXcobI+iLQnmTyxLTDU/zg9aoWMxJi2ie2gvBVrQD84z2TauqQydfSiY3UvQbI9In3eh7gK6K6pKpaiX9UlLdP2G/2NWHdO2zYHKZzND0tjUPe/7p1Z+lrjdYMrskbZ5LVSJs8/X+4eaq6hDbdtSx3z/QUcel6gDtk76+uhv93Dzz9JPZgYevTo177uqL6+rUuFtVaf1BDnC/whUDIvz+KJZVqrWE3zOur4r5v2PJBO6qY42KoCsv/LYJ/WgEVTCoM7WqPhXKH/ToGdI/9GKj9C4kzVBaGVW2BidZWRa1Q3lRpPWXPqAE3yTBpyj+e5jKN/gaiTlIT5HqnIeuWLjz5n8odPmbXbvsfKjN2qW6MYK/KJQ3ufTsqdvV1Q8aOYB+K0bQc7fkW0R+IdjNXHxKdk5i/6bV1CHyl5LJjdTRjRH+k272PcDew4pLpqqVtGny+8fgHGbwsxB4mczQjfM0C3t+/Zd/kbrbYMny0gXzFHrAas2TJF6dGvdDlC6eB8olsD05PFKdag4qg5PSw70aMrUiwimrPwAiHfyLMYbDE6JVi2u6PADyRyE/1CCD4JsWZAaVeX7ZvvOnH/+fRgHPt6ZTdxssWV66MLct6cIqRik52IGaTIx0hO7ySsUk+cP7h5tznLIGHO4VyiQb4aKmbLdeAARieEjN3JNHq1bCgzPoXYr4oQYZBN+0IDvIzfOjxa//8i+MAp54kwqWoKWLb1WZr7s9aUPFPNfpGKZBzHPeZrrIBh8ujXnKIPUHQKSDh1RVz7o0ocYTAdCjFOxDDTIIvmlBxpCY5+Tr5nMLfTX/XupigyXjS8LmSYsfY57SDrFu0NIbYEkGbbr5z42NKMZ5OhvZGYacfIIOl47zDKg/AAAAAAAAxYI2zy/bd77+P36AN6lgiXeJxTzpTqojg1Nt7dy2tjeTkNh5tT05PFIdq/v5UIn7B0YGp5ZYOVTPbescNbYUfPhYvSrpWEuJMea2BQAAAAAARcc3z/n3dp49GOodnl/dvJ661WDJ/tKxecZJKi/kpLrmAgAAAAAA0JM45vmn//nTUM6JN6lgMV960jzRhxYAAAAAAACKi2+++/U//J3Bq1P+8qsL/y95w+fOwYNftu+krjRYcrH0pHl6wzvRhxYAAAAAAICns7Nf/vf/LVg7//mk65neGz7xJhUs5kumzBMAAAAAAADQVZ688kqwc3738FcfLdIW8fU//v3Xf/kXqcsMlhwtME8AAAAAAAB6kb0bN3a+9z29c+4cPPjV//O6RCTm38ObVLCEWjoyz5sgJ8T19QQAAAAAAIrB03Pndp59NiDU+b//4KtbN1I3FizFWBDzBMXEeUE3XtENAAAAAMCx9/jxbrVqMpNQ6q6CpUgLzBMUkkbFsiqNtGsBAAAAAJAx9m7c2Dl0yHQmISxY4ltgnqCItGolRDsBAAAAAFie1OvBMwlh9CaWZBaYJygcXkdby7KsSsNu1UpWpeZuc+KgVAoSGHVkteHvKdVa0oRsQZTf0qt0HZhjucqRbWwNlYcDAAAAAERh7/Hj3SNHNM755f/63//06s9SlxMsBV46Ns/15qD7Ykyy1Of83e3JYWrX2JJttIthdWp8cKptrzcHmZy7Al8oqXOMNVmqxv5O0fXmoPp89gSiBPr21qqVyCr1t5OMM0dmVRBAlXlKtlNCSfumk4qrofJwAAAAAIAoPF1cDJhM6MiRi2+++9+e/xkWLMktsZgno2FzYyP9w81V8revQO3JYX9Vs4tlqerkrzfPaF4adNTcGCOZpM5s5TtEa55RfXtubKQ631G18o1gnr65cSNAySqXTLIqdN/VmadMFfnBp966pCyYJgAAAADi4cl68BduAAAgAElEQVTEhP6lKU9nZ23b/uVvFlI3EyzFXuI3T2qL4FRGuxjcgKc6gf7w0JWnma/3D49TCag6xxmATcQ87fk68f9ehDdPyg8bFUYhdYFK9WpQmkYloKMtwevTy2QuPRwAAAAAIBR7Gxv613U+OX167/FjJzHME0vSS6LmqYlkanZxyWSyN19nu+kuVd1VonBkC1U3/ygnmXgUV3R9ji6UaalMF+WJ25PD45NTdb5TManMWN3PKp52qWvYO6RtnlRhvkEqpz1S7mAOBwAAAAAw5+nsrKaH7U65/HRxkU4P88SS9JJMb1tfKYkpiZ6p2SXLnImXel1J5+uubjHVaE8OuwlWp8a90N8SI3jORnVEUTK4NLp5ElFcqg6MDE616SasTo3TJhxPu9jEvYjePPlV0ts2dvNky+CKVuWjOhwAAAAAwIC9x4+fvPKKpnvtk4kJ8SiYJ5akl/hnGHI7x/J4nimRTPWu+Xq/XPzoYwVDkysi5XVM5aXmuVQV1bQD8yTlrk6N948tsYooDU521i7btm17bkx1LXoAjXnqZhgKaZ6MSlIzFHGqyE0lRLIhR0vcWHo4AAAAAEAAezdu6HrYHjmyt7EhPTCkeTYv+4eunkhbabDkYok15rneHFRYEJVY0QVUuos2NKEgpoupcq+0q6pXSYV5+tPzxG2eTovm/IilLQwfjaNdXitgnvzf1G75W1XCmSeXE9WR1x+paVmi93Lbxczlh8NBAQAAAKDj6blzqh62ZCYhFWHMc/rf79qecDYv27Z998PvO7tOfri+3Aw43CQNliIucfe2Jd1EbTZi6eJpmGaXKnPyN+OogbFBGaR0ZRyVe0+MU7GgGYY6jHnG2C7btnvcPAEAAAAAeom9x493X3jBZCYhFWHMs3nZtm3RHk9+uC7dHjYNloIuib5VpT05PELPsEqNTtTsUmRO/qb8am6Mjg0SbaNkT+qrjHlqp+FhWxf0VhVu9CY1ztMfk0kkVhjnGWO7uMQAAAAAAKC47N24sXPokOFMQipCmyffydYJhDqsnnjek0yXzX8/Kaah46V0HJVKRqKpWPK/JDC3rRMzpN/bSYKHrFtqdnnIXMuds8cZU7rkJXA3eq4lm7dWMgcsd1Rg62RTy1KsTo17FWtW6ZjnWJ0fBOt1nR2canqh1BjbZff63LYAAAAAAL3Bk3pdGeqUzSSkItw4z0nvyZ02QyaeScdFKcMU0wjm+f3mpm3blyf9P1JXJiyxLB2bZ8L47/PMKynFHnv8fZ4AAAAAAEVn7/Hj3SNHws4kpCLC3LYnlr2DHZOU9KRVBEINzBM9cou3ZN08bXupqh/cmHXSMU9/kiQAAAAAAFA4ni4uSicT2jl48Om5cxEyjPpWFccYN//9pMwqbXu9Oc30zjUwT9ZXEfMszpJ988x72DMN81xvDiLgCQAAAABQUJSv63z55cCZhFREfp+n3yeWtsrJVduXxnC9bf3MnT69CH4WZcmBeQIAAAAAAABs297b2JC+rnPn0CHDmYRUhDBPRgiFN6xQ5un87faeFdPQx7rTEa2e8DrxEpVdb06nrkxYYllgngAAAAAAAOSAp7Oz0h62oWYSUhEq5unJpIMzb+3P/ps/8nPz309So0Dt1X9vbpJkdBp/pqLlDzG3beGXjszzJsgJnVxlAAAAAACQLnuPH+9Wq7HMJKQicm9bLFgMF8Q8AQAAAAAAyC57N26IPWwjzySkAuaJJekF5gkAAAAAAEBGeVKvS3rYdjCTkAqYJ5akF5gnAAAAAAAAmWPv8ePdF16IfSYhFTBPLEkvHZvnenNwYKSfWejXb7Ynh6ldY0u20S6GjL5VZb05KG9pEm8f7darWdabg+oLAQAAAAAAusPejRs7hw4lMZOQCpgnlqSXWMyTca25sZF+72WSc2O0UrYnh/1VzS6WpWoiLheE0C6OuTFGMklz2HbFRfdeCjo31vW3jwIAAAAAAIonExPJzSSkAuaJJeklfvOktixVB8Yn18PuYkgt4Kk3z/l6//A4lYBqTpCyRqJ75mnP18k/DgAAAAAAQDfZe/x498gRbiahJ2+80YWif/mbBfvX/wsWLMktiZqnJpKp2cUlY4xucmrc6Z1L6ehSlenlS0naenNwwPvbFyouvbfX3egUR9KweuzXqj5HN5w5CYJUk4ZM1fmuxX651EaqA7Nnm1Sj5ut+8/WHjzUpXzVptab+AAAAAAAgWZ4uLvKTCR07FvtMQipgnliSXpLpbesrJREe0TM1u2SZrzcHGePiPXN1atxxy9WpcTfD+frgsBsy9WKnkvSMaxFBVYcu3axCmyexvqWq25ClKi3GlPRS5sw2009mBx6+OjXuuatxq9lTCgAAAAAAusOTV17pzkxCKmCeWJJe4p9hSNE51vNMiWSqd/mG6RQk9GiVKt96c3C4uWrbc2Pjk/POlDmeTckVkVI4pl1S81yqimpqZp6kCN+NmZMwPrmu6uzanhweqU5RZ0CsleRwr13mrbZt27bnxlQXEQAAAAAAxMzexgb3us4nExNdC3USfvmbha++fIQFS3JLrDFPunerMrHCnaS7aI+Smh7vvcSpxifX25PD9Tl3giJvmiJ5epsOwArxRgZ/Ap4OzJONrDKVoWKS/OH9w805TlkDDqd926zVXhthngAAAAAAXeDpuXNMD9sjR/Zu3EilJjBPLEkvcfe2pbuD0hFLF7rXqGKXKnOleSr8cIqKfE7VXWELnP6HVEyekuohzDhb4AxDspgnI9sGMU9JQfrDpTFPbau9swfzBAAAAABIlL3Hj3er1e7PJKQC5okl6SXRt6q4kTriUVRETrNLkbn8b24+IS8BN8JzmEyQK0tPKxxjntqJdtiGB71VhW6vJ4SU782NjSjGeTob2RmGnHyCDpeO8wxoNXeKAAAAAABAAuzduMH0sO3iTEIqYJ5Ykl4SmNvWCQzS7+0kEULWLTW7PBRiyfduFSZo5Wa15eduFdJLZnl15gRSOxjfcNnksVxDxursUFi3iP6BkcGpJW5KXuXctv60wEGHj9Wrko61+lbbmNsWAAAAACBRntTrKc4kpKI75tlaaXVHcrpWUAFq1bWlY/NMmNTe5xkzqQQSIzkk3ucJAAAAAJAMe48f777wQrozCakIaZ7v/3hg6PtnKY9aeev7Az9v6g5pvT5EDnn/xwNDP74kzbb6+kqHhkMXlJ0lm7Xq6pJ187TJ5ED5plvmqexDa4o/hRIAAAAAAIiPp4uLO4cOpT6TkIoI5tlPW2I85hnLkk3Hy2aturpk3zyLEfbsXszTGd4p9KE1w3shDQAAAAAAiJEnExMZmUlIRXjzrL5+9uf9o++7WxjzbL0+NNQ/MNQ/MNQ/9FaL2zL6vmueZ9/6vrPFN1gS83z/xwPV1y+JCR550jvU71SA112uIGllRCd0siIFSQ/hqkSXK01PZ0st5Iz13pID8wQAAAAAACCn7D1+vHvkSHZmElIRxTxXWq8PeU7om2fr9SHfr5qjjHzSMU8ib1Qa2jxVCbxMVhwJFAOtdEGqyvDpWWP0g5Ots1W6aFJc62y136C9qmx7c4F5giLTqpUsyyrVWsoUjYplVRrhctTlF5zAtu1Wo6FPEFAH73CTspRs1krTlsUvpdpmUOkfl6zzUQuNSkctNUB1G3R4pbqIc6vrb3bt8UE3VdKXIK6y8nPJAAA9wtPZWed1nTuHDj2dnU27Ojoimeejr1be+r4jXcQ8+W63pGOturftJRK6ZMxTkuDSz2l1pPSPN0nKTqWVUaRnKuPv/fEl8Vhv1ai94movLh2Z502QE+L6SsobrVrJqlS0bhnWPOOpVAdP8PThHZsn75mtj0vWdMDpSMU8k0Z6G3TTtTqls/s4tpsqbXJdeQBAEXnyyivuTEKnT2c21EmIaJ5fPmqOsgLGyiFlXDGYZ+tslemtylui4HjKyvDpSVmts1W+f6wbZeVmP/Ky0raXMlWYJ2KeoMA4T+OtWknzUA7zZGlUpq3KmrYCMM/skZWbKm1yXXkAQLHY29hwXte5Uy5nbSYhFZHN86uVt74/9FarSOYpHw4K8+x0gXmCwtKoOH0PRfVsVCzL7ZpY85TDeWZtuH0WLepQBzcD8mgrpOcT2DZ9uJugxebPJ/Jq2aqVrErN3UFVvSVWz2kCd7wiWwYT86R65JKNjHnSXXYvywWePQm+FognR7OdMQrq8jVqJcXlMzgVsttAdaq5TdIzymmP/k7Q1E28+srDVXnIqtrhTWXUHLbttQqVr6oOqqoyx8iKEg6UXDIAAEiHp+fO7Tz7bGZnElIR3TydsOfZfPe2lVVGbHLo3rYwT3qBeYKi4omnzamnv91zD+rhnnu0ZlYpw2lJ04sJOA8h8sk+VdPGQdU4WG9UdVBlyyAzz8Zly+9tu1krEeGk/vbNk05gt2rnrdLHQilMMFFylnQnR7rd/PLpT4UiH9WpZvJRhNFV5qlqlOHVVx4esqod3lTBzeEytCSXgK+DpqqSzy5VMr2duscQ8wQAZIOn587tHju2t7GRdkXC0Yl5srPvmM4wFMU81dMUcSYZdoYhThH9ZJd+3h8w6ZGuvTBPmCfoAWjlUTym2koLkK6yj91GCaST1lAPx3wnT29d00NYkARJHVTZMshnGPKTNS4zYUyySsyTS2CvVcQxoq0WYwFGJ0d70kJcPu2pUOUjLdQW8jHpnRvYWMOrrzo8bFU7vKkCm8NnqMqE2q6rqvbyqQwT5gkAAB3QmXly4Uf5i0zcIZTkrSpRzJMYoPdWFVnPWKogZWXU5skewrzxZejHoz+XZaV6qwqTLVurXlw6Ns/15qD79siR0K+RXG8ODtTnOq2Bx3xdV4FO6unTvddygg7RGQr9aEoeozVdJW3V83dAgIv05hQ6CdKBGx6/x6P0AZqXBEkdlNkysDHP1sclbmLbxmUmhkmE0/ujVTtvOjWufyL8ishPTtBJC3v5VKdCmY/qVDcqQnrhjKpvIWmjzK++6lyFq2pnN1Xwja05FSpjDKqq8hQp5yKGeQIAQHRCmmc2Fn6MZaKLtKculhBLLObJ2uN8XSd1dPoYzXO9OUgKna/3i9mGraccmGdeYFyHfkzupnkKleELUj4nd26ewY/fQm9bpqutmXlKutdyOG1XVNhPIEqM/KRFMU+T2FjC5iltVPirrzpX3TbPcPXxUkY0T+WZgHkCAEDM5MM8/b6vj7refxXm2emSgHnq9Swh82RYqopKGbaecmCe+UDSr5BsCuzg56ePyzzZkviOkSE7DZpIgipbBsk4z0aFmiiocdmi57CV97YNmuSWUwtlxVQmIZy0sJdPVWLY3rNcPqF626rKjnD1VWWbVDV+89TXR9ZhWDRPfVXDniKYJwAAdEAo8xTfO4LFfEndAAtonnNjI/1jS2Tr6tR4/1i9Svd0dY71esn6Ruf3jPUEcr05OFCfnBp3Ug5OtTU1Wp0a7x9urhrX07bpnrpUnakOul7d+EPcmugPH2tSvrrknQGqMvp+wiA0EvHk1JMe9JmUeXIP5H56YQQqyYY8Z+seoNXzqfirimwZlO/zlMwqpJlhiIQ9pSJKF+12ndSeHNV29uzRjhV0+VSnQnEbqE41c1NJbzBpa/V3gtnVVx5OwWxUVLXDmyr4xubqY9EFK+oQWFXV5VNdju6/JQkAkBv2Hj/O/hs10yUfMU8seV4S6m1bn+N3ec7Gxzw9VfO7yC5VB2i7I1nRmqeIlLqypxrnqagnX6JzOLXRP9ZrBdNTN+Dw1alxz119caX0mIrQztclzgzCovAC6hlW/VaVeGOesvGN/mb6uZlLow3d+Ifr6izLlkH+VhVn9Ka3PdRbVeTxT+oclGotSgwUJ0e+nWla2MunOhXat6pwp5rLRze+kSShAr6qxhpefeXh0vYqqtrhTWVwY/P1IW9V0dUhsKqqyye/HNQlQwAUAODzdHFx7/PP065F1oF5Ykl6SXSGISpCSOSNN08mqin4qmdl0pQqlOM8TWYY8kqUS2B7cnikOkVVxuhwz0KlTaPFFQAQCq43L8gIHUofnBEAEB97jx8/+bd/y90LTlIB5okl6SWJ3rY+q1PjTkhzdWrcjViqxnmSvxlnU0VK9aNDDcd5cnsZI5V32bXbk8Mj/cPNOa9dZofTrZCqL+mCCwUFQAvTc1jV6xWkTQzmiesKAIiBp4uLT155BZ1sDYF5Ykl6SdY8bXupOlCfs9uTw7KIpfRvZcwzMfOkA6omMc95tojgw6UxTxmajsQAANu22c6X0JOM0oF5sj2cAQAgInuPHz955ZUnb7yRdkXyBMwTS9JL0uZpz42NVKeag0TDVP1m/b9V4zy15kk72zpVnEk9qWPnxkYU4zydjewMQ04pQYdLx3mypq19HwwAAAAAADDm6eLiTrn8dHY27YrkDJgnlqSXxM3TmbiV6kTanhz2upXq4p+SuW31Mc9Vb+Zbubzp6ulWqX9gZHBqiZVD9dy2zlFjS8GHj9Wrko61VFQWc9uC9FjwiH0LAAAA0GWcUOdOubx340badckfME8sSS8dm2cgSb20M0fIev8CAAAAAID4eLq4uHPo0O6xYxjYGQ2YJ5akl8TNc5WbjKdHQB9aAAAAAICu4IQ6dw8ceDIxkXZdcgzME0vSS5Lm6XY37VHponr/IuAJAAAAAJAIezdu7Bw6tHPw4NNz59KuS76BeWJJekm+ty0AAAAAAAAJ8GRiYvfAgZ1DhzCws3NgnliSXmCeAAAAAAAgZ+zduLHzve/tHjiwe+QIBnbGAswTS9JLR+Z5E+SEuL6SAAAAAABSxwl17h44sPvyy2nXpTjAPLEkvSDmCQAAAAAA8oEf6jxwAAM74+WXv1nAgiXRBeYJAAAAAAByAAl17hw8iIGdAOQOmCcAAAAAAMg0dKhzp1zGwE4A8gjMEwAAAAAAZJcn9frOs8+SgZ3QTgBySsfm6b60k160r6/UpF9vDnIv/5Qkjun1mGJZ5nsBAAAAAEDy7G1s7B454jrngQNP3ngj7RoBAKITi3mykjZf18mhJr3G90xUMEZdhHkCAAAAAKQKHercOXjw6eJi2jUCAHREAuZptyeHR6rz4dPDPAEAAAAAeh4u1LlTLmM+IQAKQILmOTc20j+2RLauTo33jy3FY570qvv3UlXSd1fYMlyvDo/0D9Tn6Bzm635XXqfCME8AAAAAgDRgRnUeOLB77BgGdgJQDBLqbVuf43ep9VKeXluKxDy5NEvVAS/uyuTvbfQTcymD+v0CAAAAAIAE4EKduwcOPJmYSLtSAIDYSHSGIarbLeOHxjMMMaWEMU/eQolP6suiU8I8AQAAAAC6xNPZWTrUuXPw4NPZ2bQrBQCIkyR62/q4PWxte3VqfHCqHZA+RvOcr/cPN1fd1LJwK/83q8EwTwAAAACArrD3+PHuCy/Qoc6dQ4cwsBOA4pGsedr2UnWgPme3J4fDBzY1u6LHPKVHkSAtYp4AAAAAAN2DC3XuHjiwe+QIBnYCUEiSNk97bmykOtUcJBHIWMyTGpy5OjXeL3dI6ThPwTzJXtueG0PMEwAAAACgG4ihzt0DB56cPp12vQAASZG4eTozx/ovWYnHPB3hHOkfGBmcalbdXe3J4ZF+Zg4h9ThS/2/3qP6BkcGppeBZdgEAAAAAQGdIQp0HDjw9dy7tegEAEqRj8wwEFgcAAAAAAGzbVoQ6dw4exMBOAApP4uZJJhkCoPu0aiXLskq1FrvJ29BqNFqKI2OrgVcEXW6IwyMdVUgaFcuqNGyzK9jhabdNj3VuMKub1yiWpgWXEl/miX7K4qwnPmsAdIOni4tiqHOnXMbATgB6gSTN0+3vioAnSItWrWRVKp6x+NtKtVZXHjQ7LwJPw4QGex1t9clh1DTREyjWKWG6dj/EVVDSFYZ5ApAf9h4/fvLKK5xz7h44sPvyy2lXDQDQJZLvbQtAWjhe0KqVaD2AeeaUDJpn968OzDO5/PFZAyBJni4u7hw6JGrnkzfeSLtqAIDu0ZF53gQ5Ia7bJV80Kk4vSFY9nefLhttLkuoo2fI3kdStWsmq1NwdjsQyx7JC60OKZVdLtRb/eEtVTlWBUq3Fa1erVlLF2tQpW5J6c9WRPnxLz5gsM8lJ0NWHL0PMzznazazG9raVXEE+J/+01yqy3FWFCmdDet0lR6vOsO4WCnEy5XeUkFp9q8tvGdlV48+b6hTrbyTVNdKff2l99OXKry99HHUJVEWrzqdJ3djtQfcYHBf0FqpQ587Bg08XF9OuHQCgqyDmCYqKJ56M3alinvIk7nMj88TIqaqzj9Erf7ss+MY+dTK1UVSgVGtJSlB28pSnpPPnbNfEPAVBNz8JwTVXtJ26gp6CsmfVNOYpra2qUFk+qkyUt5Dw/wTdLdTpHRVQtCRzGk1BjIZK8je5kZSSpbvokvow6ak0Jm3kLkHgZy1s3SRtFz900E3Qo6hCnTvl8t7GRtq1AwB0G5gnKCj0UyL/tCw8E/M9Ob117klWsupk1WIeKKVF6DfqKiDEDrXiKU/J5S+drUdcVbY6zEkIrLmq7ex2yYO+sXlKaqsqVJqPssnqW4g5w/qz1/EdFaJo8eJqCjI4b4E3kuoaKW94g4bzCQLbyKYJ/KxFqZvs82hyjwFQXJSjOg8c2D12DPMJAdCbwDxBMVFpi/RZ1g09sYgByoBV0jOUhLHUESruL5MKMOFL7QOsJGWjIvTxlT3QKx/cOzgJQTVXtZ2vC5NLKPOU1FZ5wqX5mGhVtDMcyx3VycXVFaT4d0CoshSFBpx/sT4qawt/Awd+1kLXjd6m7JmruMcAKCh7N25IQ527Bw48mZhIu3YAgNSAeYJCwjweMk+FKvNUdgk08QSnOLPwpk0e32UyqqmAKwOB4ilL2Q3zVJyEoJqb+COVSXzmGSgBaZpnmDuqI/PUFJSwecrPv6I+8Zqn9rMWum58AovvrwBAj/FkYkLqnDsHDz6dnU27dgCANOnYPN1Xp9DL+OR6pPTrzUH5K1jak8NU+iTeDqosGuQSKsQpbFJpg4n9qFa5x3GSm1KBGhXLmX/Fq6RRBVo1d6aUwC57Qkou/9C9bTs4CYE1V7U9sGNnB+apLFSaj6F5RjjDsdxRnVxck4I6KUt1jTQX3aQ+hAg3cOBnLWzdZG3zuotDPUFvsXfjxs73vifXznJ578aNtCsIAEiZWMyTdbb5uk4+NekV+jc3Rttme3I4GflUVQ/kD4l4+hvZsBIzEpQWw1ABK/oR0+1jJxTBHusGR7j+wEEVcPM2GCsmpKTPCf23WPUOzFN+EgJrrmi7c5KoegqSowqEKU87F2aWFSpruJFWKc5wZPMMcUdFKlpsOF0Qcy+obh6TG0kXrJScf2XDO2gjvzHwsxayblwTQ91jABQIVahz98CB3SNHMLATAGAnYp52e3J4pDofPr3c+paqnMcmKocwzwIgFU/yGNjwH0NZ/XOfJZnRWMbaQPXuLdVa/qOoX4Qk8CILywZXwGyyTFXYVxiNxm7mwjrxnARFfYLazmQpvFVFcgVt/jDxtIuuKClUSGwa0JOd4WjmGfqOCl+0cIqZgpzE5G0lzBkOdyOprpHq/KvvoqhtlGwM/KyFrJts8Kc6H+0nF4Acogl17h448OT06bQrCADICgmaJxurtFenxvvHlsKbpz7IuVR1e+FSB1Idel0BpnMmf683B4fr1eGR/oH6nLuR5DY+ua6oPwAp0qqV2OhKRWeeWZpHM2v1AQAAEAeaUOfOwYNPz51Lu4IAgAyRUG9bT+38XWq9lKenIULIKagfXF2dGu8fbq56iXnhVJmnYUq2LADSolUrMaGSRkUVOeFTpk3W6gMAAKBD9KHOnYMHMbATAMCR6AxDlK2xvhdyhiGCp6COfzLpvU6583VPQblKSs1TKFplm+iFC9JFNgazUVEOoMtQZ76s1QcAAEDHPKnXd559Vqmd5TIGdgIARJLobetDeqiuTo0PTrUD0hvaHTFGXmLHJ9fp4Kci5+BAqF8HSf0BAAAAAHqVvY2N3SNHlJMJHTiw+/LLadcRAJBRkjVP216qDtTn7PbksEFgU7qL9MX10Y4LDRfzDDBPSf0BAAAAAHoSfahz98ABDOwEAGhI2jztubGR6lRzkNhg6Jhne3J4hJZJKqop7Q3LjfN0jNHfuDo1LhlWKu2CK60/AF1E90/lQixpn2AAAABGBIY6dw4efLq4mHY1AQCZJnHztOfr/hyz+vTqXXNjVK9aRgKZ2WipfNi5bV3hHOkfGBmcalZ1kwm1J4eZA/n6A9BFUjdDmCcAAIDAUOdOuby3sZF2NQEAWadj8wwk73Pz5L3+IM+kboYwTwAA6GWCR3UeOLD78suYTwgAYELi5pn312Dmvf4g1xTV0IraLgAAyC9PFxefzs4yW2Zn9aHO3QMHnkxMpFVhAEDuSNI83V6vuQ0Y5r3+IP8U1dCK2i4AAMgvO3/1VzvPPutEL/ceP9594QW9c+4cPMiZKgAA6Em+ty0AICpFNbSitgsAAHLK03Pn3G/m48dNQp075fLejRtp1xoAkDNgngBkl6IaWlHbBQAAeWTv8eNA1WSWY8cwsBMAEIGOzPMmyAlx3S6gyxTV0IraLgAAyCNP/u3fzLXzyenTadcXAJBXEPMEILsU1dCK2i4AAMgde59/buicOwcPPj13Lu36AgByDMwTgOxSVEMrarsAACB37J44YaSdhw5hYCcAoENgngBkl6IaWlHbBQAA+eLp4qKRdpbLGNgJAOgcmCcA2aWohlbUdgEAQL7YHRoKNs+XX067mgCAgtCxebovvaSX8cn1SOnXm4Pyl2e2J4ep9GNLndYZgJxQVEMrarsAACBH+G9S0S54aScAIC5iMU9WF+frOvnUpFeY59wYbZvtyeFuyafShAHoEkU1tKK2CwAAcsTOX/2VUVfbZ59FV1sAQCwkYJ52e3J4pDofPr3c9JaqnMd2TQhhniBtilCKrYYAACAASURBVGpoRW0XAADkhVBvUtk9fjzt+gIAikCC5snGKu3VqfH+saXw5qkOctLp/b/bk8Pjk1N1tmuudCPd9Zfq8Ttcrw4bdx4GmWShKJBf/bQrEjNFbRcAAOSC/292dufZZ4OF8x//8Umt9vTixb2NjbR/2AEARSCh3rb1OX6XWi/l6WmWqtJBnkrzHHEztJeqAyODU23FxqXqgBebZergbUTMM7ek/ZseG0U1tKK2CwAAcsEfjh5VvTpl99ixJ2+88XRhIe1fcgBAAUl0hiGq2y2xuCgzDBE8BXX8U22epK+vG2iVbmSK8/r0rjcHQ9QHZJS0f9Njo6iGVtR2AQBA9vno/HkENgEAqZBEb1sfT/zs1anxwal2QHpD0yNyaGCe9ny9f7i5Kt3o7nKQhWRhnrkl7Z/12CiqoRW1XQAAkH3+cPTo/b/7OwQ2AQDdJ1nztO2l6kB9zhlmGRhIlO4i/WB99JbYecwT5pl70v5Zj42iGlpR2wUAAHkh7R9qAEAvkrR52nNjI9Wp5iCJLoaOebYnh0eo4KS9OjXurfoDNVenxvvpcZ58AulG1ThP2jwxvVAuSfsHPTaKamhFbRcAAOSFtH+oAQC9SOLmac/X+weonq6RetvOjVHjQjkLHRjpHxgZnGpW6ZjnWN3b3raVGxVz27KzIjGVBzmB/Xl9bWi/hEM/OZfOr70ZTqWJoRnU1TmCbda5nxzav3///qHXYqtRLFlx5hlYc03RIWrF3AcdXH46n4zfRQCkR+cf2zi/c4BI2j/UAIBepGPzDKTbfValbxPVvmIUFA7251VunhnWBte6aPM0qatzGJMwzie3XJunf0o7vPzizZTVuwiAdIF5Zp20f6gBAL1I4uZJJhnqFjBPIDVPRhBcEcmmNFCV883T5PlLUM/XhjLayJDmqcHs2ZS/3pFjwUxVM30XAZAynXsjzDNZ0v6hBgD0Ikmap9uXtcuT9MA8QbB5iupBB8X8rd6hPxny95CU9AMRfTgpyY2PUem4LfJCKcKZJ6+ejHgqynJbODR0yK87E9cjafmnQGmT/WT+bomZdRbz9LMeek1XK80Zi/pI654amWxyWVKrJneR4Z0m7zHMXURmb5wdrgEIgWHMU/ONISZjPy/BH3SgI+0fagBAL5J8b1sAug778xoc81R2oVR21GUekCSp6Iclv2Rm3aTfJmWeRk9XTrvohzMnT3VZ3B76+U96LmQPfnSTpadMaJjMPKWI5inrN6suWxqPfG2IOSoUdBHs8UHmqUJ1hcQ0kqYzD+Vk40+o/0AwtwQA3SOUeUo/t34yWWcDMT0IR9o/1ACAXqQj87wJckJct0teYH9elQ/17jMR30lVdAb670M/OccGkjiL9Z6KqH2s5dFCIC3U5xwxNFNxoDzDF09dWUIQTxaA5I/SNZnNUAz7LiwsdGKe8v8ZSE626pTKItah4B57pfGZhdB3kUkayeVgtNVvOnUqXhvqpLEARCacecq+MdhwKPfZgm12TNo/1ACAXgQxT1BA2J/XoCicZu5b0RVFFxKer1SCGRQ05B+mzv3kUPi3j5BnNG3Ek5cWqlw+niAzK12TuQzlT5/Re9vy+QWGFpMZ38ucJWmXYElv2+C7SJ+GyVl7Ef377txPDuEZHaRCKPPU9LA9dIj71Cq/o0A40v6hBgD0IjBPUEDYn1dpRy1hZKIA38eLCamZmicVemTTaQql8ony3ksnyDVEhbp0ZWmsT6o3huapHB3q0EXzlEhbbA+qjMiGMU/VXaRPE9DbVuLYzrhRPJiDNAhlntJvDO8j7bonlRXkMw7S/qEGAPQiME9QQNifV/65nOkcuqDp0BjKB7iup1ynT3fqGKESAd0go5inb2AGDQxyMbnz6ZqcsHmyRUu6Nifas5SvqaTLKzsaNU7zZDZLzo/sBB46dAh9bUE6xGWews1vXAzQk/YPNQCgF4F5ggLC/ryq+iJqpwgSuzGqnEF6OP0cpJjlVVkodVwk85QMrlSXJZycgHNhOMNQYuYZcoYhuY5Fj49oem6rKxareaovDdeszke0AtAJgcMYQpinpF+F5nMOzEj7hxoA0It0bJ7uq1PoZXxyPVL69eag+AqWsPlHqXCX3/sCEof9edV1KOVGF/GPMWbmucBagfgQJKqgrlAqz2jm6Xa4fU3cJpYlOzm6cxHY5KTNkylZfKtK4Cnt+CmVFUDZPzT4isXV25ZqnTeCU91lGq8bBSkTr3nK++HKP+fAjLR/qAEAvUgs5sma23xdJ4ea9ErzFNN34IpChnNjI/3DzdXIGZqVArpJ2j/osRHRPDNPUduVLcgQYwAAEEj7hxoA0IskYJ52e3J4pDofPr2hedpL1U7CnmKGSVgizDNV0v5Bj42iGlpR25UlujDsFQCQY9L+oQYA9CIJmufc2Ej/2BLZujo13j+2FIN5ztfdbOld/N8j/QMj/WNNiQMHmOdSle+C254cHp+cqrtdc0mL/F67VG/h4Xp1WNYxeL4eT1dhYEbaP+ixUVRDK2q7MgLp9ouAJwBARdo/1ACAXiSh3rb1OX6XWi/l6en8uWGZI4NTbb5o/++l6oBrm6tT4/0DweZJGbIfrV2dGve64LYnh4mILlXd0v1S2Pp7G3mbpRQ09p69QCDtH/TYKKqhFbVdAACQF9L+oQYA9CKJzjBEdbslJhZlhiExRCmMCyV/M2pH+aG6wq7H8mURXWQ6D8sit15KUjFJVuruxyAB0v5Bj42iGlpR2wUAAHkh7R9qAEAvkkRvWx/X02x7dWpcEqg0yUo+zlMIn3p/U7FKWz7iVOiX6yfgpVRinq7ZMn4rC+fy1SadeKGg3SDtH/TYKKqhFbVdAACQF9L+oQYA9CLJmqdtL1UH6nPOUElNYFOTlWaGoegxTypDeiZeed1CxTxV5kkXh5mHEiftH/TYKKqhFbVdAACQF9L+oQYA9CJJm6c9NzZSnWoOEhvs2DypqCY3pLODcZ7UkE5hoGZ7cnhEKFE1zpM2T1po6amGYJ6Js7CwsFkIiKFJ9+a0mQuUeaZdFx05Pb0ApEIWPi9J16FrbexCQTBPAEAqJG6ezrSubI/WsObJjQv10zhu2T8wMjjVrErmtq1L3r+i6L7rTTJEusWyo1XH6rJBoZpxqs68RLSdYm7b7pGFZ6BYgHmmSE5PLwCpkIXPC8wzVBFp/1ADAHqRjs0zkDTfbNnZmz9dtK8nBZkkC89AsdAL5nn1k+sXmu/9x5vvpLtcaL539ZPrXD3p1YzUEwuWLCyBn5dUgHmGKiLtH2oAQC+SuHmSSYa6RPxdW2Ge+SMLz0Cx0AvmuX7n3t0Hj9K+Zey7Dx6t3N7g6kmvZqSeAGSBwM9LKsA8QxWR9k0EAOhFkjRPtz9qtwOepAtuTF1bYZ75IwvPQLHQI+aZ9v3iEmieaVcQgAwB88x1QTBPAEAqJN/bFoCuo/nZ/pfTp02WpH/1DYlqno0X93/n1SVVrkuvfme/gyZR48X9wYkiAfMEoABENM+FD/ZZjRPJiFVEYZu+ZFmXpjfZui1cmxYyE/NfONGwrGnLapyY9o6No4ERGxKmaJgnACAVYJ6ggOjNcyuIvJtn40WdLzZe3L//xQb5U5pu6dXveDuWXv0OSR8PME8ACkABzdPPSF5JIf9rZWu6PM0lgnkCAICSjszzJsgJcd0ueSHQPN96511u+c9zvzr3bvPCb2Zzbp4kVKkwT8ophTUmE1822bXOgXkCUABgnvJkME8AAFCDmCcoICbm+cHvr5Llw4+vX73+6crN27Nzl/Ntno0X97/YUAmliDwhvzVm9SyCeS6P9vWNLntrM2WrPGPL15hj1DtE/KSqDPXMlC2qinyVme3Guc+UuaqZV0AoXlUfO2qDQZcJNs+FD/ZZ05a3uLFBx45OXOK3b25ubq6f2OelL18jW/adWHf3T1+i00+XSTJ1Heg8Gb28VnY3OpWhettO+9X2ixbzp1tXvuZbH6N/itKlZ0bTEE4pmbIunXB7/F6aZnoLBxeR9h0EAOhFYJ6ggJib5+JHnyxdbV1fuXXz9tr6nc/mr/w23+bpYGqeCqXkN3fZPBsVy7JKtZa/6q8kSuzm6YqaDlq+OAckZShFTGdo/D6lYJIdGgH2GkJqy7eMZM3oNVlZHu2zeM2cKVvlGTYfLwnMMxcEmKdElqbL054R7fvA9aMTDU/J1k/sY4TT+XvhRIMkni5P79vX8Gxw/cQ+XqiEr0Q6Tzqra2XfKh0FZcd5Roh5So5VlK46M+FOJimL0m9V/RVFpH0HAQB6EZgnKCAm5rn40bUPl28sX1tZuXl7bf3O5xsb7XZ7YXGxN8zTm2RImkpmnjFOM2RgnqVSidhmVs1T55OCNzGmOlOWBvskrsiZp4HJMqJI+Rx3qGyb1HrlVWM3cHsljrs8M8M1mCpATA/zzAUG5nlJiLQJFkQcievyysz6Q9S0ceLEJcrf+Pz5OvDdaL1hmex2337jNU9V6aozY1gQX5bsZJoVkfYdBADoRWCeoIAEmufbv/z11euftj69vbp2p91uP3jw4OHDhw8fPly++klvmKeHNJyZfsyzVGvUSpWGv+qYZ6tWci0piotKTY1OENM4T9ab1I4q6hZrhtFjnvT2mXLf6DIrksKamEkk8zQQY6/VVBCULsrNCeaZCwJ7206Xua6zTjqFRE1fIrFNNpkX21z4YN++DxY2r5WtS9NsLFRVB2/iWWbZd2KdP5Z4WqzmqSpdeWYMC9LUk1o1KSLtOwgA0It0bJ7uSzvpRfsWTU369eag+PJPIf3gVJva1d2XhXa/RBCJQPM8f+Hizdtrn33++b179zY3N7/w+PTmrd4yT6lVpjzO01XNRsXRS2KejYpl+Tbq/RkKjXbaYWOerhsRcRIMznHOvtFldYzTsij/IrblZikxz4BQq5cZZ57lMjuiMinzZHYznZElPW29ylJNKs/APPOE8QxDZESl8OaSTRPz9MZzTl+yytc8EWXHfyrqILVTyfbkzFNWuvLMGBakqaek2roi0r6DAAC9SCzmycrYfF0nn5r0SvOkNy5VafkEQEagef764nt3Pvv87t27Dx8+/OKLL7a2tra3t7e2ttbW1wtunkbxzHTntvVUs1GxKg1m1bfNqOpJyae4y9Q8JbG9vtEZTgrZgZ9qSyRJ6NGRfaPLnYzzFGKe8gLIWnmGH4gpmidbc515zpSpyCbpJsyGgYkNe47qFAjzzBMh57al+5oqzJPeTndVnb5k7fvgRNntVrpwomGVL5VNzJDLk9mu6tkbb29bk5lmJa9mic88dUWkfQcBAHqRBMzTbk8Oj1Tnw6c3Mk/HVBF4BDoCzfO99+cd7Xz06NHW1taXHhsbGwU3z82lV7/DWqUsITWys/vv8yRBzlatVKq1KPP0+9i2aqWI5mnbtlQ77c5inkynVsHbVJO4kgSU9pEVwTyNe7NK5+3x5ZLr3yposB095ukEM/vkkVmSaNQ7VX6dnDxgnnkiwDw5uwuWJfkMQ5ubm17gzjtq+pJFzVGkq4OTD0npq+C1st8NVTbDkPRFndFmGBJLV50ZXUPoKZGc+XK1J9OsiLTvIABAL5Kgec6NjfSPLZGtq1Pj/WNLMZinvVQVY6TzdUlfX6qnrmvC9CGBh4sb+cMleyenxvlewaDrBJrn7z5YWF6+urLy6era2sYf/nDv/v37Dx7cv//g7t17RTRPbt2bXoiZYUjWxdYhVu3cDGGeTtizEm/MU0PUGYb6RmccESUWyoqTwhi5sKSfJd+PVypiy6N9pFxSij+nLh/zpHP0MnaOiK23rTiBLZc11cfWKWDUm962r6+PVk6YZy4Ijnk6ikheXsIZ2qa4Kr5VxcupTKsmrWH8d4uwjX6vCW1f6req0OMk9W9tCTBPdenSM6NvCPWWlPL0tXJgzNOgiLTvIABAL5JQb9v6HL9LrZfy9Or8JVl5LurkNtxcdTcKwik3T9XhwkbmEC9zpv6ecCIwmyqB5qkn9+aZbUKYpzunkD/O092RiHh2OM7T01HRmQJjnlRKS9IpVhAxdn4eXmTV5ilUXlzjyxYzFDcoRVHzqlCmAL6lMM9cELK3bTdIug5da2MXCoJ5AgBSIdEZhqhut4z7hZ1hyMQ8hf69vkMqctMfLt0oNVgmBqttC+gWevM0WZL+1Tek582T8c0O57YNpEPznClbVrlMdZwNmg+IE8bl0T6ZtwpjNC2LmzNopqwZNRq3eTpyLDfP4AbLxpoyrwAV6g8yC8wz1wXBPAEAqZBEb1sft4etba9OjbvBQE36Tnrb2ktVtmPt6tS4sXlKDpdvJIcwWisL58I8UyULz0Cx0JPmmRrRe9suU+FOwQM5OSXH2Dafn0K36HGe9EhNMnkuXSHlOE+mrHDmSbeWmjLIL0ZRcYOYp9hF1w4TJAYpAvPMdUEwTwBAKiRrnra9VB2oz9ntyWGDYGDYGYak6cneEDFP2eH6EpUxT5hnJsjCM1AswDy7SaSYpy0JVlJux4YBFceIUT/btmmB5HcyL2QRkcU86Yp4B4rTCynUWN/bVkmgebJvX6GKR8gzB8A8c10QzBMAkApJm6c9NzZSnWoOEgns1Dypt6owHkiNyRT70PoJ/I2rU+P9msOVG/XjPGGemSALz0CxAPPsJiHME4CeB+aZ64JgngCAVEjcPJ0ZYv0urFHMkxkXKs/KcG5bVziduWeb1QTmtoV5ZoEsPAPFQo+Y590Hj9K+Zey7Dx7BPAEwB+aZ64JgngCAVOjYPAOBg4Guk4VnoFjoBfO8d+/hnbubWVju3XvI1ZNehXkCQAPzzHVBME8AQCokbp5kkiEAukYWnoFioRfMM7OI5pmF2CwAWSCwj0AqwDxDFZH2TQQA6EWSNE+3PyoCnqDbZOEZKBZgninCnd7sxGaxYMnCou8jkAowz1BFpP1DDQDoRZLvbQtA18nCM1AswDxTJKenF4BUyMLnBeYZqoi0f6gBAL1IR+Z5E+SEuG6XvJCFZ6BYgHmmSE5PLwCpkIXPC8wzVBFp/1ADAHoRxDxBASnMbyoxNOnenDaTNs+066Ijp6cXgFTIwucl6Tp0rY1dKCgL1wsA0IPAPEEBKcxvKswzRXJ6egFIhSx8XmCemSoCAABEYJ6ggBTmN7UXzPP26vqF5nv/8eY76S4Xmu/dXl3n6kmvZqSeWLBkYQn8vKQCzDNTRQAAgAjMExSQwvym9oJ5ZuRtJc5bIugt3OnNSD0ByAKBn5dUgHlmqggAABDp2DzdV6fQy/jkeqT0681B8RUsQvrBqXYcdU7yXS9B+c+NjfQPjPQPN1eTq0NvU5jf1B4xz7Rr5BJont2tDgCZBuaZ64KycL0AAD1ILObJWtZ8XSefmvRK86Q3LlU7l8+UzXOpqpdz0DGa39R/OX3aZOlmbTVENc/Zl/Yf/sVtVa6zL+0nvDQbmEiTUyRgngAUgIjm2fq4ZJ2vtRKpUkSbaly2rMsNm61ba60hVFLMv1U7b1nTlnW+1vCOjaOBERsSpmiYJwAgFRIwT7s9OTxSnQ+f3sg8HVPtzBvTNc+kSwdB5rkVRN7Nc/YljS/OvkT55uxL8oS3f3HY2377F4c1fhoFmCcABaCA5klQVFLIf61iTVca7DaYJwAAqEnQPOfGRvrHlsjW1anx/rGlGMyTiRkuVd1euPU5PjERYDYNl8zvzUvybE8Oj09O1d3+vX4TZPkM16vDI7wJk/zXm4MD9cmpcb+fMNV52GuyQRdlEJJA83zrnXe55T/P/ercu80Lv5nNuXmSUKXCPDnXpBSTS+TLJrvWOTBPAAoAzFOeDOYJAABqEuptq/ZA0/Tq/H2l9IOrq1Pj/cPNVTrcut4cZLd4aeg8l6oDXno/lNqe9GWSdO5V5SOL7jLm6fUNljRTWjqIARPz/OD3V8ny4cfXr17/dOXm7dm5y/k2z9mX9r80q/BJGdKU/MaY1bMI5rk82tc3uuytzZSt8owtX2OOUe8Q8ZOqMtQzU7aoKvJVZrYb5z5T5qpmXgGheFV97KgNBl0m2DxbH5esactb3NigY0e1y/x227btzVrJS19ZI1tKtU13f+Mynb5RIcnUdaDzZPRyreJudCpD9bZt+NX2ixbzp1tXWfOtj9E/RenSM6NpCKeUTFmXa26P38sNprdwyCIAAKArJDrDEOuBlIyFnGHIJEbqBkLdyKptr06NezFGPg0Xk+T3sr2FZaFaOh9ZrJLJX2hdQOkgBszNc/GjT5autq6v3Lp5e239zmfzV36bb/N0MDZPeW9b3jS7aJ6tWsmySvQ/7RsVbkNyxG6erqjpoOWLc0BShlLEdIbG71MKJtmhEWCvIaS2fMtI1oxek5Xl0T6L18yZslWeYfPxksA8c0GAeUpkabrS8Iyo9LHrR7XznpJt1kqMcDp/t2rnSeJGZbpUOu/Z4GatxAuV8JVI50lntVbxrdJRUHacZ4SYp+RYRemqMxPuZJKyKP1W1d+kCAAA6ApJ9Lb14T1Qnz5sb1teYr2NbqhTm8bJc75OTTArCaXaJI0+H1Wd+W697EZ56SAGTMxz8aNrHy7fWL62snLz9tr6nc83Ntrt9sLiYu+Y5+1fHJZ3ypWZZ4zTDAXEPBsVyyLPSK1aqVveGdY8dT4peBNjqjNlabBP4oqceRqYLCOKlM9xh8q2Sa1XXjV2A7dX4rjLMzNcg6kCxPQwz1xgYJ6XhUibYEHEkbgur8ysP0RNz9dqlyl/4/Pn68B3o/WGZbLbffuN1zxVpavOjGFBfFmykxmhCAAA6ArJmqdtL1UH6nPEA/Xpw84wpMhqbmx8ct7xz6A8I8Y8g9puaJ6IeSZGoHm+/ctfX73+aevT26trd9rt9oMHDx4+fPjw4cPlq5/0iHne/sVh5cy2KcY8bdum3JP1zkbFcyT/ScvfRm+VIzU1OkFM4zxZb1I7qqhbrBlGj3nS22fKfaPLrEgKa2ImkczTQIy9VlNBULooNyeYZy4I7G3bqHBdZ23bVktU4zKJbbLJvNhm6+NS6eOWvVaxLjfYWKiqDt7Es8xSqm3yxxJPi9U8VaUrz4xhQZp6UquhiwAAgK6QtHnac2Mj1SnPA/XpQ79VRdab13bUVJvGZJynW2GSQJ+Pos5688Q4z8QINM/zFy7evL322eef37t3b3Nz8wuPT2/e6gXz1E5+m4Vxno2KZVVqtHdSEtqqlSRi2qgEmactyCe3N1zM03UjIk6CwTnO2Te6rI5xWhblX8S23Cwl5hkQavUy48yzXGZHVCZlnsxupjOypKetV1mqSeUZmGeeMJ5hiIyoFN5cYpuYpzees3HZqqx5IsqO/1TUQWqnku3JmaesdOWZMSxIU09JtY2LAACArpC4eToe6PcjjWKezLhQtksqmW+WDhg6gVZ1muC5bUeqY3V/QlqTfKQNCTBPzG2bFIHm+euL79357PO7d+8+fPjwiy++2Nra2t7e3traWltfL7x5GrwmJf25bVu1kkWP7yS2Sa+0aqXgSCePSjttc/OUxPb6Rmc4KWQHfqotkSShR0f2jS53Ms5TiHnKCyBr5Rl+IKZonmzNdeY5U6Yim6SbMBsGJjbsOapTIMwzT4Sc25bua6owT3o73VW1cdkqfVyruN1KW7XzVuVyxcQMuTyZ7aqevfH2tjWZaVbyapb4zNO4CAAA6Aodm2cg+Xt9JYZc5p5A83zv/XlHOx89erS1tfWlx8bGRsHN02wIKDWyM633eTYq9ABPuletZVlEOKnt5goq1U67s5gn06lV8DbVJK4kAaV9ZEUwT+PerNJ5e3y55Pq3ChpsR495OsHMPnlkliQa9U6VXycnD5hnnggwT87ugmVJPsOQbdte4M47qnHZouYo0tXByYek9FVwreJ3Q5XNMCR9UWe0GYbE0lVnRtcQekokZ75c7cmMUgQAAHSDxM2TTDKUH2CeuSfQPH/3wcLy8tWVlU9X19Y2/vCHe/fv33/w4P79B3fv3iuiefrrzvBOjpdmJceQF4PGq512dPPUqmVgAgOizjDUNzrjiCixUFacFMbIhSX9LPl+vFIRWx7tI+WSUvw5dfmYJ52jl7FzRGy9bcUJbLmsqT62TgGj3vS2fX19tHLCPHNBcMyzcZka4igYmi2uim9V8XKq0KpJaxhD0FtVaPtSv1WFHiepf2tLgHmqS5eeGX1DqLekVBprlcCYZ4QiAAAgeZI0T7crab4CnjbMswAEmqee3JtntolinuyYzlatUmvZdqPCdMfteA7czsZ5ejoqOlNgzJNKaUk6xQoixs7Pw4us2jyFyotrfNlihuIGpShqXhXKFMC3FOaZC0L2tu0GSdeha23sQkFZuF4AgB4k+d62AHQdvXmaLN2srQaYJ7vFo+SFJSx+Uyd0aJ4zZcsql6mOs0HzAXHCuDzaJ/NWYYymZXFzBs2UNaNG4zZPR47l5hncYNlYU+YVoEL9QWaBeea6oCxcLwBADwLzBAWkML+pPWyeKRC9t+0yFe4UPJCTU3KMbfP5KXSLHudJj9Qkk+fSFVKO82TKCmeedGupKYP8YhQVN4h5il107TBBYpAiMM9cF5SF6wUA6EFgnqCAFOY3FebZTSLFPG1JsJJyOzYMqDhGjPrZtk0LJL+TeSGLiCzmSVfEO1CcXkihxvretkoCzZN9+wpVPEKeOQDmmeuCsnC9AAA9CMwTFJDC/KbCPLtJCPMEoOeBeea6oCxcLwBADwLzBAWkML+pPWKedx88SrtS9t0Hj2CeAJgD88x1QVm4XgCAHgTmCQpIYX5Te8E8t7a+unN3MwvL1tZXXD3pVZgnADQwz1wXlIXrBQDoQWCeoIAU5je1F8wzs4jmmYXYLABZILCPQCrAPDNVBAAAiMA8QQEpzG8qzDNFuNObndgsFixZWPR9BFIB5pmpIgAAQATmCQpIYX5TYZ4pktPTC0AqZOHzAvPMVBEAACAS0TxboOjEe591mcL8psI8UySnpxeAVMjCtFDIYQAAIABJREFU5wXmmakiAABAJLp5xlsPkCnyfn0XFhY2CwExNOnenDaTNs+066Ijp6cXgFTIwucl6Tp0rY1dKAjmCQBIhejmuQ2KC8wzI8A8UySnpxeAVMjC5wXmGaqItH+oAQC9CMwTSIB5ZoReMM+rn1y/0HzvP958J93lQvO9q59c5+pJr2aknliwZGEJ/LykAswzVBFp/1ADAHoRmCeQAPPMCL1gnhl5W4nzlgiunvRqRuoJQBYI/LykAswzVBFp30QAgF4E5gkkwDwzQo+YZ9r3i0ugeaZdQQAyBMwz1wXBPAEAqQDz7DlOnTol/ZumwOb5L6dPmyxJ/+obEtU8Gy/u/86rS/q8A9I0XtzvEphTSGCeABSAiOa58ME+q3EiGbGKKGzTlyzr0vQmW7eFa9NCZmL+CycaljVtWY0T096xcTQwYkPCFA3zBACkQszm2ZquDhx+fmj6lr9pZWbo8PMD1HJybluxt3p2hd5OrfpbrpxkcyMLUyjQEiifxTbPrSDybp6NF4N9UZ9m6dXveDuXXv3O/v0vNsLUOgCYJwAFoIDm6Wckr6SQ/7WyNV2e5hLBPAEAQEm85nnl5OHnT56ZGDg+4+9mHbI1XR04PHHRWZmbYESUXlWap3YLMEYvn4U3z7feeZdb/vPcr86927zwm9mcmycJVWrMMzBN40VaNtm1zoF5AlAAYJ7yZDBPAABQE6t5zjnOeeUk7ZOcH/qrV04KgUrfS2GeyaORz14wzw9+f5UsH358/er1T1du3p6du5xv82y8uP/FBh2ylBCYht8Vs3oWwTyXR/v6Rpe9tZmyVZ6x5WvMMeodIn5SVYZ6ZsoWVUW+ysx249xnylzVzCsgFK+qjx21waDLBJvnwgf7rGnLW9zYoGNHJy7x2zc3NzfXT+zz0pevkS37Tqy7+6cv0emnyySZug50noxeXiu7G53KUL1tp/1q+0WL+dOtK1/zrY/RP0Xp0jOjaQinlExZl064PX4vTTO9hYOLSPsOAgD0InGa58UzrklePPP8wJkr7lYx5unsknoj2QjzTBjEPB3nXPzok6Wrresrt27eXlu/89n8ld/m2zwd9OYZmIY3zS6aZ6tWsqxSjbr9GhVuQ3LEbp6uqOmg5YtzQFKGUsR0hsbvUwom2aERYK8hpLZ8y0jWjF6TleXRPovXzJmyVZ5h8/GSwDxzQYB5SmRpujztGdG+D1w/OtHwlGz9xD5GOJ2/F040SOLp8vS+fQ3PBtdP7OOFSvhKpPOks7pW9q3SUVB2nGeEmKfkWEXpqjMT7mSSsij9VtVfUUTadxAAoBeJzzxpD1yZGSJdalXjPOcm/G63Pl68FOaZJBjn+dY77y5+dO3D5RvL11ZWbt5eW7/z+cZGu91eWFyEeUrNM8ZphgJino2KZVUa7kqrVuqWd4Y1T51PCt7EmOpMWRrsk7giZ54GJsuIIuVz3KGybVLrlVeN3cDtlTju8swM12CqADE9zDMXGJjnJSHSJlgQcSSuyysz6w9R08aJE5cof+Pz5+vAd6P1hmWy2337jdc8VaWrzoxhQXxZspNpVkTadxAAoBeJzTxb01VqeOets8e9nrScH85NDKiimtuIeXYDzG27tbX19i9/ffX6p61Pb6+u3Wm32w8ePHj48OHDhw+Xr34C80wz5mnbNuWerHc2Kp4jETGlttFb5UhNjU4Q0zhP1pvUjirqFmuG0WOe9PaZct/oMiuSwpqYSSTzNBBjr9VUEJQuys0J5pkLAnvbTpe5rrNOOoVETV8isU02mRfbXPhg374PFjavla1L02wsVFUHb+JZZtl3Yp0/lnharOapKl15ZgwL0tSTWjUpIu07CADQi8RlnrfOHhfmm3VElPfDKydNxnn6yTzEGCnMMzEKb57nL1y8eXvts88/v3fv3ubm5hcen968BfPMwDjPRsWyKjXaOykJbdVKEjFtVILM0xbkk9sbLubpuhERJ8HgHOfsG11Wxzgti/IvYltulhLzDAi1eplx5lkusyMqkzJPZjfTGVnS09arLNWk8gzMM08YzzBERlQKby7ZNDFPbzzn9CWrfM0TUXb8p6IOUjuVbE/OPGWlK8+MYUGaekqqrSsi7TsIANCLxGSedPdaf4skemk6t60zWJQNovpjR7kiQNwU3jx/ffG9O599fvfu3YcPH37xxRdbW1vb29tbW1tr6+swzyzMbduqlSx6fCexTXqlVSsFRzp5VNppm5unJLbXNzrDSSE78FNtiSQJPTqyb3S5k3GeQsxTXgBZK8/wAzFF82RrrjPPmTIV2STdhNkwMLFhz1GdAmGeeSLk3LZ0X1OFedLb6a6q05esfR+cKLvdShdONKzypbKJGXJ5MttVPXvj7W1rMtOs5NUs8Zmnroi07yAAQC8Sj3kyUwpxG/lxnmKPWcUuJweyV8gf5pkchTfP996fd7Tz0aNHW1tbX3psbGzAPDeZkZ1pvc+zUaEHeNK9ai3LIsJJbTdXUKl22p3FPJlOrYK3qSZxJQko7SMrgnka92aVztvjyyXXv1XQYDt6zNMJZvbJI7Mk0ah3qvw6OXnAPPNEgHlydhcsS/IZhjY3N73AnXfU9CWLmqNIVwcnH5LSV8FrZb8bqmyGIemLOqPNMCSWrjozuobQUyI58+VqT6ZZEWnfQQCAXiTe93mCglB48/zdBwvLy1dXVj5dXVvb+MMf7t2/f//Bg/v3H9y9e6+I5imzzKA05KWf8WrnZnTz1KplYAIDos4w1Dc644gosVBWnBTGyIUl/Sz5frxSEVse7SPlklL8OXX5mCedo5exc0RsvW3FCWy5rKk+tk4Bo970tn19fbRywjxzQXDM01FE8vISztA2xVXxrSpeTmVaNWkN479bhG30e01o+1K/VYUeJ6l/a0uAeapLl54ZfUOot6SUp6+VA2OeBkWkfQcBAHoRmCeQUHjz1JN788w2UcyTHdPZqlVqLdtuVJjuuB3PgdvZOE9PR0VnCox5UiktSadYQcTY+Xl4kVWbp1B5cY0vW8xQ3KAURc2rQpkC+JbCPHNByN623SDpOnStjV0oCOYJAEgFmCeQUGzzNFmS/tU3BObJbvFw99B9cGN490qH5jlTtqxymeo4GzQfECeMy6N9Mm8VxmhaFjdn0ExZM2o0bvN05FhunsENlo01ZV4BKtQfZBaYZ64LgnkCAFIB5gkkFNg880UPm2cKRO9tu0yFOwUP5OSUHGPbfH4K3aLHedIjNcnkuXSFlOM8mbLCmSfdWmrKIL8YRcUNYp5iF107TJAYpAjMM9cFwTwBAKkA8wQSYJ4ZAebZTSLFPG1JsJJyOzYMqDhGjPrZtk0LJL+TeSGLiCzmSVfEO1CcXkihxvretkoCzZN9+wpVPEKeOQDmmeuCYJ4AgFSIbp6g2MR7n3WZLDwDxQLMs5uEME8Aeh6YZ64LgnkCAFIhonkCkGWy8AwUCz1inncfPEr7lrHvPngE8wTAHJhnrguCeQIAUgHmCQpIFp6BYqEXzPPevYd37m5mYbl37yFXT3oV5gkADcwz1wXBPAEAqQDzBAUkC89AsdAL5plZRPPMQmwWgCwQ2EcgFWCeoYpI+yYCAPQiME9QQLLwDBQLMM8U4U5vdmKzWLBkYdH3EUgFmGeoItL+oQYA9CKYYQjIifc+6zJZeAaKBZhniuT09AKQCln4vMA8QxWR9g81AKAXiW6e8dYDZIq8X98sPAPFAswzRXJ6egFIhSx8XmCeoYpI+4caANCL4H2eQEIBzDPtKsQDMTTp3pw2kzbPtOuiI6enF4BUyMLnJek6dK2NXSgoC9cLANCDwDyBBJhnRoB5pkhOTy8AqZCFzwvMM1NFAACACMwTSIB5ZoReMM/bq+sXmu/9x5vvpLtcaL53e3Wdqye9mpF6YsGShSXw85IKMM9MFQEAACIwTyAB5pkResE8M/K2EuctEfQW7vRmpJ4AZIHAz0sqwDwzVQQAAIjAPHuOU6dOSf+mgXlmhB4xz7Rr5BJont2tDgCZBuaZ64KycL0AAD1ITOa5MjN0+PmBw9WzK/SW6tkVsotZTs5tb89NDByeuMjmcHKOrN86e9xfvXiGOXxo+lYcCta7BMpngc3zX06fNlm6WVsNUc1z9qX9h39xW5nt7Ev7XdSpTNJEA+YJQAGIaJ433//hn73+5s1EqhTRphqXLetyw7bt1scl63zN+fVrrTWEn0Ex/1btvGVNW9b5WsM7ls4kKhEbEqZomCcAIBViNM/q0PHnB85cobd45kkZqc+Vk5RqtqarA4e5wx0vvXWWztbZdXwGIdcO0ctnsc1zK4i8m+fsSzpfvP2Lw97O2784vH//S7PR0kQG5glAASigeRIUCifkv1axpisNdhvMEwAA1MRpnmdXrpwkkhlsntsXz5Do5a2zx6tnpycGPKVsTVe9vxlBBTGikc/Cm+db77zLLf957lfn3m1e+M1szs2ThCpV5jn7Ei2S7FqYNNGBeQJQAGCe8mQwTwAAUBOveVLGaGCerF5OXNz2xZWV0ueZfrkgDno85vnWO+9+8PurZPnw4+tXr3+6cvP27NzlfJvn7Ev7X5qlQ5Y8/C6ZVpqk6YAimOfyaF/f6LK3NlO2yjO2fI05Rr1DxE+qylDPTNmiqshXmdlunPtMmauaeQWE4lX1saM2GHSZYPO8+f4P/+yfn/OW8Qtk4+tvvvo2v922bfv+m9/y0v/gGtnyw1fvu/svvE2n/+0PSDJ1HezNWmnaspyF1su1irvxfK3G9rZtfFxyd02XapvK/Ft+Mquy5lsfo3+K0uljxahpoOIyZV2uuT1+LzeY3sIhiwAAgK4Qs3n6IcrAcZ7bVJfauQmnP+3FM84uKna6ve3JJ1nkHgvM6fFxnrR5Ln70ydLV1vWVWzdvr63f+Wz+ym/zbZ4OGvPkLVJmlSZpOkBnnq1aybJK9D/tGxVuQ3LEbp6uqOmg5YtzQFKGUsR0hsbvUwom2aERYK8hpLZ8y0jWjF6TleXRPovXzJmyVZ5h8/GSwDxzQYB5crHNm+//0JFGR0e/9f4d27Zt+86rrz/3Z2//1rZd7aSE0/n7zquvk8S//cE///Bbr3siev/Nb9HWKquDI36VNWelVTtvlT5u2bajnZ5VOgrKjvOMEPOUHKsoXaKRvBmGMU+/CGX9TYoAAICuELt5bm/PTQwcn2kZxDzJNEKt6aoT4WxNVwfOXOEnH2K5eAYh0I7o8bltiXkufnTtw+Uby9dWVm7eXlu/8/nGRrvdXlhc7EHz5JOapOmAgJhno2JZ5BmpVSt1yzvDmqfOJwVvYkx1piwN9klckTNPA5NlRJHyOe5Q2Tap9cqrxm7g9kocd3lmhmswVYCYHuaZCwzM01FKW9hOGSMR1AtvP0enJ6t+Pvff/Nbrb776tiuisvz5OvDdaL1hmez2Vu18IuapKr31cYnr3CsQyjx9pWRjoeGKAACArpCAeW7fOnv8+aEzEwbmuX3xzPMDZ2bOHqdGhx6fuej4pwpthiAWCm+eb//y11evf9r69Pbq2p12u/3gwYOHDx8+fPhw+eonPWieGYp52rZNuSfrnY2K50j+k5a/jd4qR2pqdIKYxnmy3qR2VFG3WDOMHvOkt8+U+0aXWZEU1sRMIpmngRh7raaCoHRRbk4wz1wQ2Nv2tz/gus7ati2NhXrm6cU22WRebPPm+z/81vt37Gvjf/b2b9lYqKoO3sSzzFKqbVLBTyed52mxmqeqdNu2GxWqm66MMOYp2x6hCAAA6ApJmKfzxhSvW6xeFJ2U/ly1bsdaf0ohf5Jbl4tn6PQgEQpvnucvXLx5e+2zzz+/d+/e5ubmFx6f3rxVcPPMxzjPRsWyKjXaOykJbdVKEjFtVILM0xbkk9sbLubpuhERJ8HgHOfsG11Wxzgti/IvYltulhLzDAi1eplx5lkusyMqkzJPZjfTGVnS09arLNWk8gzMM08YzzB0bdwd0klimKHM0xvPeeHt535wzRNRdvynog68Yaq2J2eestIpyFhTPj7ZuXmGLgIAALpCMubp9okNGue5ve2MC6UjnP6BzBZq0YRDQUwU3jx/ffG9O599fvfu3YcPH37xxRdbW1vb29tbW1tr6+sFN8+czG3bqpUsenwnsU16pVUrBUc6eVTaaZubpyS21zc6w0khO/BTbYkkCT06sm90uZNxnkLMU14AWSvP8AMxRfNka64zz5kyFdkk3YTZMDCxYc9RnQJhnnki5Ny218b9cZ4K86S3051vL7z93Lfef/MHbh/dO6++/twP3h6XTZAr620rm+uV6wcrvs8ztt62JjPNSl7NEp95GhcBAABdISbzBMWi8Ob53vvzjnY+evRoa2vrS4+NjY2imyc9alP5rk6TNJExm9u2UaEHeNK9ai3LIsJJbTdXUKl22p3FPJlOrYK3qSZxJQko7SMrgnka92aVztvjyyXXv1XQYDt6zNMJZvbJI7Mk0ah3qvw6OXnAPPNEgHly4zaJYarMUzHDkG3bXtTUO+rC289RcxTp6uDM8UMCj74KrlX8bqiyGYakL+qMNsOQWDrnvTJdlL441JsSyZkvV2ueUYoAAIBuAPMEEgpvnr/7YGF5+erKyqera2sbf/jDvfv37z94cP/+g7t37xXRPGXdZx18pTRJEw9RzVOrloEJDIg6w1Df6IwjosRCWXFSGCMXlvSz5PvxSkVsebSPlEtK8efU5WOedI5exs4RsfW2FSew5bKm+tg6BYx609v29fXRygnzzAXBMc8L/qtTfG9Umqcte6uKy29/QKvmtfE/k3S1ldeBea8JbV/qt6rQ4yTZQZIhzVNdeuMyNfjTILhqM29JqTTWKoExzwhFAABA8sA8gYTCm6ee3JtntolinuyYzlatUmvZdqPCdMfteA7czsZ5ejoqOlNgzJNKaUk6xQoixs7Pw4us2jyFyotrfNlihuIGpShqXhXKFMC3FOaZC0L2tu0GSdeha23sQkFZuF4AgB4E5gkkFNs8TZZu1lYDzJPd4lHywhIWv6kTOjTPmbJllctUx9mg+YA4YVwe7ZN5qzBG07K4OYNmyppRo3GbpyPHcvMMbrBsrCnzClCh/iCzwDxzXVAWrhcAoAeBeQIJBTbPfNHD5pkC0XvbLlPhTsEDOTklx9g2n59Ct+hxnvRITTJ5Ll0h5ThPpqxw5km3lpoyyC9GUXGDmKfYRdcOEyQGKQLzzHVBWbheAIAeJLp5gmIT733WZQrzmwrz7CaRYp62JFhJuR0bBlQcI0b9bNumBZLfybyQRUQW86Qr4h0oTi+kUGN9b1slgebJvn2FKh4hzxwA88x1QVm4XgCAHiSieQKQZQrzmwrz7CYhzBOAngfmmeuCsnC9AAA9CMwTFJDC/Kb2iHneffAo7UrZdx88gnkCYA7MM9cFZeF6AQB6EJgnKCCF+U3tBfPc2vrqzt3NLCxbW19x9aRXYZ4A0MA8c11QFq4XAKAHgXmCAlKY39ReMM/MIppnFmKzAGSBwD4CqQDzzFQRAAAgghmGgJx477MuU5jfVJhninCnNzuxWSxYsrDo+wikAswzU0UAAIBIdPOMtx4gU+T9+hbmNxXmmSI5Pb0ApEIWPi8wz0wVAQAAInifJ5AA88wIMM8UyenpBSAVsvB5gXlmqggAABCBeQIJBTDPYkAMLe2KxExR2wUAALGQ9q8oAAAkAswTSMi7eRaGXMQGI1DUdgEAAAAAABUwTyAB5pkRimpoRW0XAAAAAABQAfPsOU6dOiX9mwbmmRGIoRV1SfsEAwAAAACALhGTea7MDB1+fsBfJi5yKsMkqJ5d4XZfOSkevjIzxKUkW9zcuFKcTOgEzHJyjmynsnXz5CrgL0PTt3wfm66yW7RHzU0wRevPg7JiUjHslED5LJ55/vSnPz1+/PjRvJG6GXbNPHN6gbLM8ePHf/rTn6b4oQMAAAAAoInRPH1Nak1XGYmam2DsS7+6vd2arg5N3zIwT4kWUuYp07aVmaHD1aHjzw+cuSKtuXyLy5WTh58/eWZi4PiMJOArPYrbqGm4ScViRS+fBTPP0VOnzpw50263n+SN1M2wO+aZ3wuUZdrt9pkzZ0ZPnUr30wcAAAAA4JCIeW47Huga2pWTrCK6e92I5a2zx/m9qjxZ86yenZ6gwp63zh5//uQ0m0BhnmdXrpwke83Nc85xzisnWU/WHcVs1J4Hk4rFjUY+C2aex44du3fv3s7Ozhe5ZWdn5969e8eOHUv7XCZCAS5QBin2PQMAAACA3JGUefKWqFIyjV8F50lZq6OFgdl6230xNjbPi2fcsi6eoSKT+qPojWbnQVexWOmpmOfRo0efPHmStgh0ypMnT44ePZr2uUyEYlygDFLgewYAAAAAuSN585ybkAz7JJFD+d6gPPnMb509ToZxBo7zdPL0KmBonrxDSgeyao/SnweTisVHr43zPHr06O7u7uOcs7u7W1SLKMYFyiAFvmcAAAAAkDtyHfPc5sdeGsc8t7eFMKmmXKbz8La8h3BMMU9dxWKiB+e2dcTmUc4psEUU4wJlkALfMwAAAADIHamP85Ts9aAGPTqQsCFVnDOxED1Pj6l5OgJ5ZsLAPG+dPS5MYMvNMxTPOE9txbpIIc1zM+cU2CKKcYEySIHvGQAAAADkjqzMbcvNUuuPqGQjje4AS87oSJpw5rntvfgkyDzF7rUR+ujqz4NJxbpI8cxzZ2fnYc7Z2dkpqkUkeYHq37W+Wf0gmbyzWC5Dge8ZAAAAAOSObLzPkzucCidePENtD3zjSIhxnnT+AQ4pnVKI3yhWKfT7PIMq1kV6zzzr37VovlvvkhqEoMAWYXaBaJEz9zp9ylB+GOomgXkCAAAAADDEZJ6gWBTSPB/oqH/X+mb1d+7K76rftKzv1rUHdJ8CW0TYCySsmh8Yaq8ucdBNEirnpCjwPQMAAACA3AHzBBIKaZ73dbzxt9Y3X/4vb+2/Xv6m9bdv+LtcvE1v/K31zZdfdjd/8+X/Ikn8LP7r5W9a9DZV/mLmSgpsEaEvkL8qXAvhqlGXwOdv32AukmV0OcLfJP+l2ctVRtjsbpVVSZKs5+4ZAAAAAOQOmCeQUDzz/PLLL2/qeO1vrG/8U9Nfsf7mtZs3b9682fynb3g7mv/0DXfra39jeQma//QN5m8/gZuB9ye1iSSUZq7kyy+/LKpFhL1A1Cp1LV77G8vdSJ1Y/kDmArB7Ay9H2JtEqIw0W7KRrvXN1/5GdYdIkikp8D0DAAAAgNwB8wQSCmmeKzomnqNiUM9NeJsv/Ogb/hpZmXjO+saPLpADhb8nnqPy8Fb8jV4+8syVFNgizC4QOc/0Knf+xRPLJ/AQDg++HJFuEmW2QmUu/OgbFluo9FgxmZoC3zMAAAAAyB0wTyChkObZ0jHxnPXMj37l/OH+5W5meW6CTqz4m97W+tWPnnGO8v741Y+e8YsSM1dSYIsIc4HE60W2e2fYMVDdlZUdHnw5It0kyr1iZZjEXkNkVeKSqSnwPQMAAACA3BHdPEGxifc+S5ejR49ub29f1/Hzb1vPHH/3+vXr16+/e/wZy/r2z73N3p/yxNK/maP8lXePP2N9++fvHn/GPUCeuZLt7e2iWoTZBaJO1rvHn3FPO3f+rW//3DvR3MXiL4pwePDliHSTSPfKKyMkCKxSUIIC3zMAAAAAyB0RzROAHBHOPN0HemfVV5zr16+/e/zbMtsR//aPZ9zg3ePPWM888wyVnyTzXrQIgwvEnGjqxEnVkTrp5FLQJ9u/PsLl0V2OaDeJbK+0Mj//tp+7+/8J2bGSZL14zwAAAAAgd8A8QfFxxOYTHf/619YzL/zSX//lC89Y7pZ//WvStdFNQidW/P3LF55hjyEpxA2yhBIKbBEGF4g5p5b11/8qnkD6DJLNf/3X5KL4x0s2OhnqL0cnNwmfrawy0rZIcza9aQp8zwAAAAAgd8A8QfE5evTo1tbWcs7Z2toqqkV0cIH+5/+w/vxYI94zXRwKfM8AAAAAIHfAPEHxccRmKecU2CI6uED/9/+w/vyH52I+1YWhwPcMAAAAAHIHZhgCcuK9z9Ll6NGjf/zjHz/KOX/84x+LahEdXKCf/ZX15z98J+ZTXRgKfM8AAAAAIHdEN8946wEyRcGu77Fjx9bX1x88ePD73PLgwYP19fVjx46lfS4ToQAXKIMU+54BAAAAQO7A+zyBhIKZ56lTp06fPv3ZZ5/9Mbd89tlnp0+fPnXqVNrnMhEKcIEySLHvGQAAAADkDpgnkFAw87Rt++TJk8eOHTuaW44dO3by5Mm0z2KC5P0CZZDC3zMAAAAAyBcwTyCheOYJAAAAAAAASBGYJ5AA8wQAAAAAAADECMyz5zh16pT0bxqYJwAAAAAAACBGYjLPlZmhw88P+MvERU5lmATVsyve9rkJJvHKzNDh50/OkfVbZ48/f3KOHE4duDIz5KySP0RUhRK/mq4OHH5+aPpWiIYUgkD5hHkCAAAAAAAAYiRG8/TVrjVdFfSS8klm9cpJapejggNnrlDZTlz08h86zu3SmqeuUKroMxMDx2f8xugbUiD08gnzBAAAAAAAAMRIIua57Tiba3RXTnJxRdfo3HDixTNk762zx6tnp30V9DNx879ykpQSYJ4BhW5vb2/POQUx6qttSNHQyCfME4D/v71zaXHluOK4PpIX+gjJSh8gMHgnstFsZnPRBxAEeaB9ke9SeKcQM4HkQhDEqwnMYgh2sLOIF5owCSHEwwUncbh9secOTBatRz1OPbq7Wmq1fj9mMWrV49SpqlP1V78AAAAAICFNKc+AMlQO6hp1fp3v5OVOlG7SW1o0XL7r4Lbw65l0KtVf1PHDOU8AAAAAANgbzStP407ONcqZxu0ltTfzQgFez4qvpDOc24x+5RlVqVr4JvFpKE/u8wQAAAAAgH1y+HOe28cIra4mxUnI1dVkMLvV1KOavrhKtt45T/0a2vvF2Dy5GignJ8bwAAAQF0lEQVTqmOHZtgAAAAAAsGcOf59nvr7e9fVirJyEHL++LvSnUP79Yjw6n81r3Od5vxirD7AdDc5G5kW8QkNOCJQnAAAAAAAk5ODPtt0dMU5CDjwP/inSV362rXp5rVH+yTzb1g/KEwAAAAAAEnLo93muuZ2qL1MpzoKKb++0E5hVj/RrdIVKtUcK5frB03ifZxCUJwAAAAAAJCSR8oRugfIEAAAAAICEoDxBAOUJAAAAAAAJQXmCAMoTAAAAAAASgvIEAZQnAAAAAAAkBOUJAihPAAAAAABISHXlCd0m7TgDAAAAAIBTpqLyBAAAAAAAAIgE5QkAAAAAAADNgvIEAAAAAACAZkF5AgAAAAAAQLPwhCGQSTvOAAAAAADglKmuPNPaAa3i+Pt3lfV7BsNl1cKWw2DuTX39rKznVll/m2u1XO7H8Wqlbaaddm6tsv8Rk7myG0QMsyq2xWbcjL39+/xAvVx9zpar5nCODZLQpO3orVxmQmOUovbUy03gWg4aXSbq9MLe1q+y1B8PZYN5fIL67LPLSqU/yApYh1SdFVNOknWhQl61B5NM2NI7jazf6/M+TxDohvLUZsNyWF18hgNijZBZWSrUoYWbYJGW21lNebo4oPLUfv44EeW5l23OYR0bpAnl2QZjdkUdfDNblcpSp6F6m8u4B+qPh467pR3pDz5Z96Y8U60LdXpknzLbSo/yBIEOKs868ywYEJPEDpSnTcvtRHkm4SC9vJ9KUZ4HMeYgQTUtKM+E1B8P3XZLS9KjPJNX1FC9tW1AeYJAt5WnEd9WWV8Kd8vh+irdfpapGdTreLdXl+lX9OqX+ipX+SgWGWvhcpcleJWGVZ91uGfWZCYvKs2GUkG6hUsht6vNu0r1M8zCgrLK+r1hti7F9tomtVZqyYbrx73G2832NsTex3iUp+1kLXH0MLPxDzPnemCNh5U+9nxjw9VHRleqyVvZy8aXfjuNWbO03eWopqZjK3jy+VkbUctNaPMHn91GxPKwp3ONujLpaluxdww/aD3vMyYubss9ZaR0F+Xud9t7Zn2h6OeZsEaYNUaOVo9x3DP+hFzhURczGYMxJLmr7XFYoVHO8RAd8wPBvN5SK8+I6LhUv8ucLjULiB17Ta+ARkURmyt5nER1VrRjDXuK9jlypFgXQrH0WfBDfziM6k2fA0M2uOxHeYKLDirP5VCPddrcsqbTctgTI8cq60trtBVJ9fAZt/lzSgWzXdImwVGpll5JUwQELeQ4dudCGtkGI9j2+301q7yM7Y4GHVuy4YK3lQ2LuMtS0/obEtl3LgfuEpccZhqhhsvZ1JKNLtUXoOh+t7rS8kAre1losmyn6QBzoQ5PoqqOreBJ14gKBh+fh10bv1Bdrt5ZO85qe9CYcNz2NNC23S4qYnbYH61jjujn9bAvSjiaZhjpGICl50h4MnrWlMZcbYzDyo1yGBkX8/3dVHuplWdEZFyq3WVOlzrcFDv2mlsBXYZZwyYQcmM6q6pjHY5JvC7YxoQDflxvxo9ewSG+yYjyPDkuLy/F/1W6oTwttnPGiBGi8JTivXnybvNZm8+673z7sPLK02lAXKW6e/QWysJJSONzwjZc9bNsqAQaOVrtjgYdW6Xh0r7UVY5ZiLchkX3ncqCjUeFhphUe6nHRJKMk8akwVfrdoQHa3suOJvu85FJ/njFQ1bFmORGedI2ocPDxeNgjPL11uXonOC9cxgTjtmy/GFSlomJmh/3xWS/EGTTiPBwVutW9umSwbJjTAdrnqPkelMSOmiq7WvBSpUb5jA/GfP+gbWCpLRGXaneZf0LZ6WPHXmMroMsws6Kyk6vs2ud27DLruy5ha2hdiN9tPsf1ZlMbxcTK83Z6Nhrs/ubX22/uXp/vjk8Wd8ZxJeWunMniLjKBUmCuHFnnNaqbLO7y/Ga+tXN6Y5i9+zu/ul2MR4Px65VV+/TGKe3aT1B8dkN56lNkOTR+vNnOLDFgqpk3iVaZIGf72cpVm3Y5Q3jz51q5dcNEA1yVuiJ27F5KSOO2QXFTP1s9L4ee4KwfDTq2dMPVY4oDAuUoqXwNiey7UI+XHmY2nmEmmqSe+RcbUqHfPeO2zb3saXKMlzz9G1lLZKvLeNI1oqI2IqKH3Z0bU5fYO1ZOxzZO6m5/3Baq8NtvFFWt343y/NGvwrrgaprHYJ1ycyQ4LCPXlLSutgqv1ii3kdEx32VYwqXWMyO8TqvZZfJsdaWPGXt7WAHjKjKPl+ysSo71+jLluhAhiYMLfZ3Q57DBPxnTKc+b+UDXY6uryfnVvfCV+nGjSNcpNxkHpvL0J/Aoz8n5eDSY3Zpf5VJG+eD9Qi0hv1+MNWOOFL/47KLy1MPNerbIGxhfQHQuW9svigBuTe9gLPDs4H2t8lbakPJ0mLmuTVm1h0tHcnsn7XVs6YabCXr+3yjLNSSy7+qsu2EjQ8NMLKWm8gwPft9X7eplT5P3rzxLWRunSjafI5VnXNSqUNfzs9E7Eftsd3d747ZgXGBw6kXVUp7B6Fd1XXA1zWOwTNwcCQ7L8sozgau91sQ3KhBiYmK+q8CWKM8EXabPVlf6ppVnxDIdX5F5vILyLO3Y9WgKL5p114UWK09321MpT48eu52emV+tribr05iF0ruaK2c17xfj0fRKU4/hBG7lubi7nYpqM1Z5rtVvIZVXVxPrFOix4hGf3VeexXTJHBsY17UHrkDimcPbLMFYEBNpXAZEVioabH/0p3FG07UZ2XB33VJvOBzGGBB0bNmGC+l6w6XX+PiGRPZd2c1KcJjFNNxvklGyeJFb2X4P7Djb2sueJsd4KfgxWEvMhBLL8XjAd9FUaCiWCiDxddkZNtsyxRjrokFnd3vjtu0uX1C1iqrW76qdnqBReV1wNc1jsI/QHKk83xt1dYSojmqUfzzHxHxXgXWXWu+MiHRayi6TBlPZsdfoCliqIv/xYDnVHevI2dC6UKrhMb3ZxEYxpfIUBZvnK1McKsL1Zj4Yv16VTuApXJGL1ZRnUenZ/NrTzGPj9M55mkdWWV/8Xe/5+Xn9s9/u59nth1WmXrkv7h7U+bauw45BxRdG3piNg8MAZ6Xqmqb8XyeguGzY+Up1RcRvflGOLdlww5dRxqt4G5JKeZYdZqaBUsMDi6tjPKj+Ktvv8cqzVb3sWfurzRrZDzUcW8GTWmZ1RIWCT3A4CThGr2tbqY1Mfagb7nVGM+WAP1DGKRarKN/sELwnOsQVNCI9HF4O1OMugx3JnyNGXXhYRsQQi7quFjRYpUYFx3Mw5hsfjaqrL7XeGeF3WpIuc7rUdFGJsdfoCmgZFh421TurpGOVcvSckifrrgs9rapAyFJ7MKI340evYINvMiZSnjdz61ZM/1ebWyW1Gy/n18X5zBtBPYYTbBG+sqrLSyrPPL+emRf9Hi8ncp+ncIm5lcS9gSniYK/X8zzsW965bnP2ev1sZYSY7YUsm9/AlbzrjIHrTSQDPJXqtSplxAQUVxrZhmczPLpXDKHGoGNLNlz5QrfCabyKryH2ClrKgdrxMsPMttBueHiPJY0HdeyV7ffAUG1rL6uV+u2MnDUOP1R3bAVPah7RR1Rk8HENJxmpLjWL2DtFgu1T+CX3uqOZEbcd9kUpDXEJkGeH7D3RHe7oF+VheTmQnC4tKnIzS82RqGEZiiE2NV1t92O1RnnHQ1TMNz663FVhqfXOCJ/TUnWZ06XPcvrg2Eu/Arr7L2bY1OqsMo61M1pGp1wX7JHjcojeg+HerDN6XfanVJ51z3nma3E4m5snJ0sk8BRunSkNGhbZkCPkNJ5tG8EqCz/M7YCssqF7xwcAEMApkQ5KQM3GZE8Ut1u+BHQJXO0hwYxo4TxvBvZFnSDVfZ7CzZyer8z7PO+2B9UnD5nqUU6QK7dxFmzPsmpa8X4xHp3P5ijPGE5Bea6yfquj9XLYavMAoG1o52kCF3UcjHob5YRxu+1LQIfA1T7a81tM+2Ff1AkSP9vWeAJt3LNtt3Ludrp9eI98SlNKUFwHu3vqj/IoWkMrrt+kgvIM03HlWVwC0O4AthyezFoCAIlQL29q6Xa08j47Ydw+hiWgI+DqIDWUp+8K5y7CvqgbJH2fp/bSTv01mL73eUpyznMxrZSxuAlz/Se+Q2WXzH6fp7NYT43dpuPKEwAAAAAA9ktS5QldAeUJAAAAAAAJQXmCAMoTAAAAAAASgvIEAZQnAAAAAAAkBOUJAihPAAAAAABICMoTBFCeAAAAAACQkOrKE7pN2nEGAAAAAACnTEXlCQAAAAAAABAJyhMAAAAAAACaBeUJAAAAAAAAzYLyBAAAAAAAgGbhCUMgk3acAQAAAADAKVNdeaa1A1oF/QsAAAAAAAnhfZ4ggPIEAAAAAICEoDxBAOUJAAAAAAAJQXmCAMoTAAAAAAASgvIEAZQnAAAAAAAkBOV5clxeXor/q6A8AQAAAAAgIYmU593r87PRQPubLO7Eb43jykf1yDqLlNisa35tC6eryeBsdH51vzlwOzXNW/+dX93nN/Ptx+lNjM2hVrSeoPhEecLx8urVq/F4fHFsjMfjV69eHdp5AAAAAE2RUHk61NfNXFN06seA8pycj0eD2a341TbX6moyMKu+nZ6NprP5YPxaODMrmmocDNksG3ZU+MUnyhOOlI8uL2ez2cPDw9Ox8fDwMJvNPrq8PLQLAQAAABqhaeV5O9XOPeb5WivOr8Vcpry8nW4TOJTnukBVZN4UmvN2qqpHv6nawRibJcOODY/4RHnCkfLixYs3b948Pj7+79h4fHx88+bNixcvDu1CAAAAgEZoWHn6ZV5YeSqqMiZXnud5fj1b68brmXJmMtKkaJsFw44KznlCJ7m4uHh6ejq0iqzI09PTxcXFoV0IAAAA0AhN3ee5Pmd4M5fuw9ycjYxQnkJiv/I0/7dqDyrPWJvdrWg9J3Wf58cvX8b8HdpMSMPFxcX79++/P07ev3+P8gQAAICu0vZznnm+uXo2TnnqV97eL8bmdbOpznkKhh0Jp/Zs249fvnwr8cMPP/z444/v3r17+/YtyrMzFMrzv8cJyhMAAAA6zEHv88yVuyULtucbtQLvF+PR+WwecZ/n/WJsPcDWeM5Qmvs8JcM6RPeU529+97n698cvv/70V38Y/+LXf/3bP/M8F5XnKuv3er1+FueK1XJZymerrC+W7Tq+HPZ6w2WZGkpUWqdwV5kHolCe/zlOUJ4AAADQYQ76bNviVkz9FOX6zkzpYbOD4LNt7ctrQzeFygfjn8erGtYhOqk8v/jqL8Xfl19/892/v//Z6NOfnH3y+fXX7969k5TnKuv3hsM4SVZBfZXNgvKM4+Li4vHx8bsqfPZh74PJF5WyJuLx8RHlCQAAAF2leeWZu9+Nmed5IT6337pfVXI9U5Wn/D5P8ZFC5kHb1NLv83QY1iE6rDz/9Odv/v6Pf/3291/99OyTn49/+e23D/LVtoUYW2X9GE2G8mzNeIlVnl9MPujt+PCz71CeAAAAAI3yfx9cE/VJlLPzAAAAAElFTkSuQmCC" alt="" />

ch2-4:遇到嵌套列表进行缩进打印的更多相关文章

  1. python_嵌套列表变成普通列表

    如何把[1, 5, 6, [2, 7, [3, [4, 5, 6]]]]变成[1, 5, 6, 2, 7, 3, 4, 5, 6]? 思考: -- for循环每次都遍历列表一层 -- 把取出的单个值加 ...

  2. #WEB安全基础 : HTML/CSS | 0x4.1嵌套列表

    如果你认为列表只有ul和ol那你就错了 我要为你展示新的列表 这次只有一个index.html文件 这是它的效果 以下是它的代码 <html> <head> <title ...

  3. 【原创】从 列表的重复 到 用sum展开二层嵌套列表将子元素合并

      转载请注明出处:https://www.cnblogs.com/oceanicstar/p/9517159.html     ★像R语言里头有rep函数可以让向量的值重复,在python里面可以直 ...

  4. PYTHON压平嵌套列表

    list 是 Python 中使用最频繁的数据类型, 标准库里面有丰富的函数可以使用.不过,如果把多维列表转换成一维列表(不知道这种需求多不多),还真不容易找到好用的函数,要知道Ruby.Mathem ...

  5. python 用嵌套列表做矩阵加法

    写一个函数,接收两个由嵌套列表模拟成的矩阵,返回一个嵌套列表作为计算结果,要求运行效果如下: >>> matrix1 = [[1, 1], [-3, 4]] >>> ...

  6. Python中关于列表嵌套列表的处理

    在处理列表的时候我们经常会遇到列表中嵌套列表的结构,如果我们要把所有元素放入一个新列表,或者要计算所有元素的个数的话应该怎么做呢? 第一个例子 对于上图中的这样一组数据,如果我们要知道这个CSV文件中 ...

  7. [leetcode]339. Nested List Weight Sum嵌套列表加权和

    Given a nested list of integers, return the sum of all integers in the list weighted by their depth. ...

  8. [leetcode]364. Nested List Weight Sum II嵌套列表加权和II

    Given a nested list of integers, return the sum of all integers in the list weighted by their depth. ...

  9. [leetcode]341. Flatten Nested List Iterator展开嵌套列表的迭代器

    Given a nested list of integers, implement an iterator to flatten it. Each element is either an inte ...

随机推荐

  1. Malformed POM expected START_TAG or END_TAG not TEXT

    I resolved this problem by replacing blank space to tab. 规范些就解决这个问题了!!! 由此可见规范的重要性!

  2. E: 软件包*需要重新安装,但是我无法找到相应的安装文件。(ubuntu14.04)

    ubuntu安装搜狗输入法官方下载的安装包时,电脑有点卡我给强制关闭了,然后重启打开软件管理中心,直接闪退! 之后不能安装任何软件(包括命令). 显示: E: 软件包Sougou Pinyin需要重新 ...

  3. Wget命令

    Linux wget是一个下载文件的工具,它用在命令行下.对于Linux用户是必不可少的工具,尤其对于网络管理员,经常要下载一些软件或从远程服务器恢复备份到本地服务器.如果我们使用虚拟主机,处理这样的 ...

  4. VMWare虚拟机下为Ubuntu 12.04.1配置静态IP_转

    转自:http://www.cnblogs.com/objectorl/archive/2012/09/27/vmware-ubuntu-nat-static-ip-settings.html 背景在 ...

  5. Create your first isolated Python environment

    # Install virtualenv for Python 2.7 and create a sandbox called my27project: pip2. install virtualen ...

  6. mysql参数sql_log_bin

    如果想在主库上执行一些操作,但不复制到slave库上,可以通过修改参数sql_log_bin来实现. 比如想在主库上修改某个表的定义,但是在slave库上不做修改: master mysql> ...

  7. java Double封装类的对象保留两位小数

    double value = 22.365454; DecimalFormat df = new DecimalFormat("##.00");value = Double.par ...

  8. PAT 解题报告 1003. Emergency (25)

    1003. Emergency (25) As an emergency rescue team leader of a city, you are given a special map of yo ...

  9. SQLSERVER:Timeout expired. The timeout period elapsed prior to obtaining a connection from the pool. This may have occurred because all pooled connections were in use and max pool size was reached.

    背景: 在最近开发中遇到一个问题,对一个数据库进行操作时,我采用64个并行的任务每个任务保证一个数据库连接对象:但是每个任务内部均包含有24个文件需要读取,在读取文件之后,我们需要快速将这24个文件批 ...

  10. Latex技巧

    文件.tex 文件打开 error reading 版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://www.blogbus.com/jzhao-logs/27226136 ...