Self Organizing Maps (SOM): 一种基于神经网络的聚类算法
自组织映射神经网络, 即Self Organizing Maps (SOM), 可以对数据进行无监督学习聚类。它的思想很简单,本质上是一种只有输入层--隐藏层的神经网络。隐藏层中的一个节点代表一个需要聚成的类。训练时采用“竞争学习”的方式,每个输入的样例在隐藏层中找到一个和它最匹配的节点,称为它的激活节点,也叫“winning neuron”。 紧接着用随机梯度下降法更新激活节点的参数。同时,和激活节点临近的点也根据它们距离激活节点的远近而适当地更新参数。
所以,SOM的一个特点是,隐藏层的节点是有拓扑关系的。这个拓扑关系需要我们确定,如果想要一维的模型,那么隐藏节点依次连成一条线;如果想要二维的拓扑关系,那么就行成一个平面,如下图所示(也叫Kohonen Network):
既然隐藏层是有拓扑关系的,所以我们也可以说,SOM可以把任意维度的输入离散化到一维或者二维(更高维度的不常见)的离散空间上。 Computation layer里面的节点与Input layer的节点是全连接的。
拓扑关系确定后,开始计算过程,大体分成几个部分:
1) 初始化:每个节点随机初始化自己的参数。每个节点的参数个数与Input的维度相同。
2)对于每一个输入数据,找到与它最相配的节点。假设输入时D维的, 即 X={x_i, i=1,...,D},那么判别函数可以为欧几里得距离:
3) 找到激活节点I(x)之后,我们也希望更新和它临近的节点。令S_ij表示节点i和j之间的距离,对于I(x)临近的节点,分配给它们一个更新权重:
简单地说,临近的节点根据距离的远近,更新程度要打折扣。
4)接着就是更新节点的参数了。按照梯度下降法更新:
迭代,直到收敛。
与K-Means的比较
同样是无监督的聚类方法,SOM与K-Means有什么不同呢?
(1)K-Means需要事先定下类的个数,也就是K的值。 SOM则不用,隐藏层中的某些节点可以没有任何输入数据属于它。所以,K-Means受初始化的影响要比较大。
(2)K-means为每个输入数据找到一个最相似的类后,只更新这个类的参数。SOM则会更新临近的节点。所以K-mean受noise data的影响比较大,SOM的准确性可能会比k-means低(因为也更新了临近节点)。
(3) SOM的可视化比较好。优雅的拓扑关系图 。
参考文献:http://www.cs.bham.ac.uk/~jxb/NN/l16.pdf
Self Organizing Maps (SOM): 一种基于神经网络的聚类算法的更多相关文章
- DBSCAN聚类︱scikit-learn中一种基于密度的聚类方式
一.DBSCAN聚类概述 基于密度的方法的特点是不依赖于距离,而是依赖于密度,从而克服基于距离的算法只能发现"球形"聚簇的缺点. DBSCAN的核心思想是从某个核心点出发,不断向密 ...
- 【机器学习】DBSCAN Algorithms基于密度的聚类算法
一.算法思想: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层 ...
- 简单易学的机器学习算法—基于密度的聚类算法DBSCAN
简单易学的机器学习算法-基于密度的聚类算法DBSCAN 一.基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别. ...
- 简单易学的机器学习算法——基于密度的聚类算法DBSCAN
一.基于密度的聚类算法的概述 最近在Science上的一篇基于密度的聚类算法<Clustering by fast search and find of density peaks> ...
- 基于K-means Clustering聚类算法对电商商户进行级别划分(含Octave仿真)
在从事电商做频道运营时,每到关键时间节点,大促前,季度末等等,我们要做的一件事情就是品牌池打分,更新所有店铺的等级.例如,所以的商户分入SKA,KA,普通店铺,新店铺这4个级别,对于不同级别的商户,会 ...
- 聚类:层次聚类、基于划分的聚类(k-means)、基于密度的聚类、基于模型的聚类
一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一 ...
- 基于ReliefF和K-means算法的医学应用实例
基于ReliefF和K-means算法的医学应用实例 数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据 ...
- 一种新型聚类算法(Clustering by fast search and find of density peaksd)
最近在学习论文的时候发现了在science上发表的关于新型的基于密度的聚类算法 Kmean算法有很多不足的地方,比如k值的确定,初始结点选择,而且还不能检测费球面类别的数据分布,对于第二个问题,提出了 ...
- 数据挖掘案例:基于 ReliefF和K-means算法的应用
数据挖掘案例:基于 ReliefF和K-means算法的应用 数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘(DataMiriing),指的是从大型数据库 ...
随机推荐
- select_tag in rails about selected not change and onchange()
make it more easy after http://www.cnblogs.com/juandx/p/4058399.html 1 if you want the selected is ...
- 存储过程之七—java代码调用
一.简介 jdbc调用存储过程与调用一般的sql语句有些差别.jdbc调用一般的sql语句的时候,返回的是结果集,或是sql语句后是否执行成功的标记量.而存储过程返回的可以是结果集,输出参数.返回状态 ...
- 有关RDS上只读实例延时分析-同适用于自建MySQL主从延时分析判断
个人不是很喜欢在技术上跟人互喷,尤其是不在同一个岗位上的人.一方面本人的性格如此,另一方面,我自身的口水也确实是不行,人生经历了第一次的双11洗礼,在大促的环境下,总算知道了有些东西是否应该规避,这次 ...
- Fragment学习笔记
Fragment为大量型号,尺寸,分辨率的设备提供了一种统一的UI优化方案.将Activity分解为多个Fragment,将极大地提高UI的灵活性,也更容易为一些新的设备配置带来更好的用户体验. on ...
- Java API 快速速查宝典
Java API 快速速查宝典 作者:明日科技,陈丹丹,李银龙,王国辉 著 出版社:人民邮电出版社 出版时间:2012年5月 Java编程的最基本要素是方法.属性和事件,掌握这些要素,就掌握了解决实际 ...
- 怎么直接让火狐输入json数据,而不是弹出文件保存对话框?
一.问题再现: 我需要浏览器输出的是json数据,但是浏览器弹出的是一个文件保存的对话框,这样的体验有点差.所以想怎么让浏览器直接输出到浏览器的页面上面,并且格式的输出,还可以编辑. 测试数据: ht ...
- Hbase快速开始——shell操作
一. 介绍 HBase是一个分布式的.面向列的开源数据库,源于google的一篇论文<bigtable:一个结构化数据的分布式存储系统>.HBase是Google Bigtable的开源实 ...
- 探索 OpenStack 之(9):深入块存储服务Cinder (功能篇)
继研究了Neutron之后,继续Nova的外围研究之旅.本站是研究块存储服务Cinder. 0.验证环境 环境包括: 1.一个controller节点,运行nova-api, nova-schedul ...
- Geoserver发布Oracle数据
在Geoserver安装包中,默认是不能发布Oracle数据库里的数据的,只能发布postgis.shp等数据,详细如截图: 如果想发布oracle数据,得安装相应版本的关于oracle数据源的插件, ...
- 怎样用Zbrush中的Curves Tubes创建手指
之前我们已经能够初步完成了模型的人体躯干,今天的Zbrush教程将继续使用Curves Tubes创建手指,实现更细致的塑形.文章内容仅以fisker老师讲述为例,您也可以按照自己的想法,跟着老师的步 ...