斯坦福第三课:线性代数回顾(Linear Algebra Review)
3.1 矩阵和向量
3.2 加法和标量乘法
3.3 矩阵向量乘法
3.4 矩阵乘法
3.5 矩阵乘法的性质
3.6 逆、转置
3.1 矩阵和向量
如图:这个是 4×2 矩阵,即 4 行 2 列,如 m 为行,n 为列,那么 m×n 即 4×2
矩阵的维数即行数×列数 矩阵元素(矩阵项):
Aij 指第 i 行,第 j 列的元素。 向量是一种特殊的矩阵,讲义中的向量一般都是列向量,如
如下图为 1 索引向量和 0 索引向量,左图为 1 索引向量,右图为 0 索引向量,一般我们用 1 索引向量。
3.2 加法和标量乘法
矩阵的加法:行列数相等的可以加。
矩阵的乘法:每个元素都要乘
组合算法也类似。
3.3 矩阵向量乘法
矩阵和向量的乘法如图:m×n 的矩阵乘以 n×1 的向量,得到的是 m×1 的向量
算法举例:
3.4 矩阵乘法
矩阵乘法:
m×n 矩阵乘以 n×o 矩阵,变成 m×o 矩阵。 如果这样说不好理解的话就举一个例子来说明一下,比如说现在有两个矩阵 A 和 B,那
么它们的乘积就可以表示为图中所示的形式。
3.5 矩阵乘法的性质
矩阵乘法的性质: 矩阵的乘法不满足交换律:A×B≠B×A
矩阵的乘法满足结合律。即:A×(B×C)=(A×B)×C
单位矩阵:在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的 1,我们称 这种矩阵为单位矩阵.
它是个方阵,一般用 I 或者 E 表示,本讲义都用 I 代表单位矩阵,从 左上角到右下角的对角线(称为主对角线)上的元素均为 1, 以外全都为 0。如:
3.6 逆、转置
矩阵的逆:如矩阵 A 是一个 m×m 矩阵(方阵),如果有逆矩阵,则:
我们一般在 OCTAVE 或者 MATLAB 中进行计算矩阵的逆矩阵。
矩阵的转置:设 A 为 m×n 阶矩阵(即 m 行 n 列),第 i 行 j 列的元素是 a(i,j),即: A=a(i,j)
定义 A 的转置为这样一个 n×m 阶矩阵 B,满足 B=a(j,i),即 b (i,j)=a (j,i)(B 的第 i 行第j 列元素是 A 的第 j 行第 i 列元素),
记 AT=B。(有些书记为 A'=B)直观来看,将 A 的所有元素绕着一条从第 1 行第 1 列元素出发的右下方 45 度的射线作 镜面反转,即得到 A 的转置。
例: 矩阵的转置基本性质:
matlab 中矩阵转置:直接打一撇,x=y'。
斯坦福第三课:线性代数回顾(Linear Algebra Review)的更多相关文章
- Ng第三课:线性代数回顾(Linear Algebra Review)
3.1 矩阵和向量 3.2 加法和标量乘法 3.3 矩阵向量乘法 3.4 矩阵乘法 3.5 矩阵乘法的性质 3.6 逆.转置 3.1 矩阵和向量 如图:这个是 4×2 矩阵,即 4 行 ...
- 机器学习第3课:线性代数回顾(Linear Algebra Review)
3.1 矩阵和向量 如图:这个是 4×2 矩阵,即 4 行 2 列,如 m 为行,n 为列,那么 m×n 即 4×2 矩阵的维数即行数×列数 矩阵元素(矩阵项): Aij 指第 i 行,第 j 列的 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- 【线性代数】Linear Algebra Big Picture
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Lin ...
- machine learning (3)---Linear Algebra Review
Matrix Vector Multiplication 左边的矩阵向量相乘法比右边的更简洁而且计算高效 Matrix Matrix Multiplication 可以同时计算12个结果(4个房子面积 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 3_Linear Algebra Review
Lecture3 Linear Algebra Review 线性代数回顾 3.1 矩阵和向量3.2 加法和标量乘法3.3 矩阵向量乘法3.4 矩阵乘法3.5 矩阵乘法的性质3.6 逆.转置 3. ...
- PYTHON替代MATLAB在线性代数学习中的应用(使用Python辅助MIT 18.06 Linear Algebra学习)
前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众 ...
- 算法库:基础线性代数子程序库(Basic Linear Algebra Subprograms,BLAS)介绍
调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这 ...
- 个案排秩 Rank (linear algebra) 秩 (线性代数)
非叫“秩”不可,有秩才有解_王治祥_新浪博客http://blog.sina.com.cn/s/blog_8e7bc4f801012c23.html 我在一个大学当督导的时候,一次我听一位老师给学生讲 ...
随机推荐
- mac配置impala odbc
下载mac对应驱动并安装:http://www.cloudera.com/downloads.html.html *HOST 地址是impala Daemon所在的机器ip,端口可以在cm中设置 vi ...
- 记一次Android内存分析过程
前言 上周五的时候,祝峰找到我,反映了Android收银台买单结果页内存飙升的问题.我在自己的机器上也试着重现了一下,发现从支付台-微信支付成功并返回后,进入买单结果页的内存会突然增大,导致GC,如图 ...
- 魅族手机(魅蓝note)无法作为调试设备连接到mac问题的解决
问题描述: OS X(Yosemite),ADB(1.0.32),Android Studio(1.0.1),魅蓝note手机(m1 note,Android 4.4.4,Flyme OS 4.2.0 ...
- linux下查找某个文件位置的方法
一.通过文件名查找法: 举例说明,假设你忘记了httpd.conf这个文件在系统的哪个目录 下,甚至在系统的某个地方也不知道,则这是可以使用如下命令: find / -name httpd.conf ...
- 有关RAVE报表 - 大富翁论坛20050419
部分资料来源于RAVE开发人员指南 ravedevguide5 新闻组News.Nevrona.com RAVE的官方主页 www.nevrona.com/rave KeyLife富翁笔记 作者 ...
- C# 指定物理目录下载文件,Response.End导致“正在中止线程”异常的问题
FileHandler http://www.cnblogs.com/vipsoft/p/3627709.html UpdatePanel无法导出下载文件: http://www.cnblogs.co ...
- yum 介绍
yum是一个用于管理rpm包的后台程序,用python写成,可以非常方便的解决rpm的依赖关系.在建立好yum服务器后,yum客户端可以通过 http.ftp方式获得软件包,并使用方便的命令直接管理. ...
- linux编程中printf显示不加换行的缓冲问题
最近在编写linux网络编程时,总是遇到这样的事,程序逻辑没错误,但是程序运行到某个地方就停在那里了,后来才发现在prinrf()中加入换行能正常运行了,如“ printf("123&quo ...
- MySQL_杭州11月销售昨日未上架的SKU_20161212
#C034杭州11月销售昨日未上架的SKU SELECT 城市,a.订单日期,a.客户数,a.订单数,b.产品数,a.金额,c.销售确认额,c.毛利额,c.毛利率 FROM ( SELECT 城市,订 ...
- 真机在wifi下调试android程序
大家好,最近在学习android程序由于手机接口问题,调试程序的时候老是接触不良而不能正常调试,因此感到相当苦恼,于是在网上查找无线调试android的方法.经过研究和尝试现已成功无线调试程序,方法分 ...