传送门

Sherlock and MiniMax

Authored by darkshadows on May 07 2014

Watson gives Sherlock an array $A_1,A_2\cdots A_N$. 
He asks him to find an integer $M$ between $P$ and $Q$ (both inclusive), such that,$\min \{|A_i-M|, 1\le i\le N\}$ is maximised. If there are multiple solutions, print the smallest one.

Input Format 
The first line contains $N$. The next line contains space separated $N$ integers, and denote the array $A$. The third line contains two space separated integers denoting $P$ and $Q$.

Output Format 
In one line, print the required answer.

Constraints 
$1 \le N \le 10^2$
$1 \le A_i \le 10^9$
$1 \le P \le Q \le 10^9$

Sample Input

3
5 8 14
4 9

Sample Output

4

Explanation 
For $M$ = 4,6,7, or 9, the result is 1. Since we have to output the smallest of the multiple solutions, we print 4.


Solution

二分答案+$O(N)$构造

复杂度$O(N\log{Q})$


Implementation

#include <bits/stdc++.h>
using namespace std;
#define X first
#define Y second
#define pb push_back
int n, p, q;
typedef pair<int,int> P;
vector<P> interv[];
vector<int> a;
int now, pre;
void merge(P &a, P &b){
int x=max(a.X, b.X);
int y=min(a.Y, b.Y);
if(x<=y) interv[pre].pb({x, y});
}
const int INF=INT_MAX;
bool C(int x){
pre=, now=;
interv[pre].clear();
interv[now].clear();
interv[now].pb({p, q});
P l, r;
for(int i=; i<a.size(); i++){
for(int j=; j<interv[now].size(); j++){ l={-INF, a[i]-x};
r={x+a[i], INF};
merge(interv[now][j], l);
merge(interv[now][j], r);
}
if(interv[pre].empty()) return false;
interv[now].clear();
swap(pre, now);
}
return true;
}
int bs(int l, int r){ //max
int mid;
while(r-l>){
mid=(l+r)>>;
if(C(mid)) l=mid;
else r=mid;
}
return l;
}
int main(){
//freopen("in", "r", stdin);
scanf("%d", &n);
for(int i=; i<n; i++){
int b;
scanf("%d", &b);
a.push_back(b);
}
sort(a.begin(), a.end());
a.erase(unique(a.begin(), a.end()), a.end());
scanf("%d%d", &p, &q);
C(bs(, 1e9));
sort(interv[now].begin(), interv[now].end());
printf("%d\n", interv[now][].X);
}

总结

二分答案类问题

提法

求满足条件$C(x)$的最大/最小的$x$,其中$C(x)$是一个关于$x$的bool表达式。

这类问题能用二分答案解决的条件是$C(x)$要有单调性,这具体是指

若求使$C(x)$为真的最大的$x$,那么$C(x)$必须满足

若$C(x_0)$为真,则 $\forall x \le x_0, C(x)$为真

若求使$C(x)$为真的最小的$x$,那么$C(x)$必须满足

若$C(x_0)$为真,则 $\forall x \ge x_0,C(x)$为真

HackerRank and MiniMax的更多相关文章

  1. 【HackerRank】Sherlock and MiniMax

    题目连接:Sherlock and MiniMax Watson gives Sherlock an array A1,A2...AN. He asks him to find an integer  ...

  2. 日常小测:颜色 && Hackerrank Unique_colors

    题目传送门:https://www.hackerrank.com/challenges/unique-colors 感谢hzq大神找来的这道题. 考虑点分治(毕竟是路经统计),对于每一个颜色,它的贡献 ...

  3. HackerRank "Square Subsequences" !!!

    Firt thought: an variation to LCS problem - but this one has many tricky detail. I learnt the soluti ...

  4. HackerRank "Minimum Penalty Path"

    It is about how to choose btw. BFS and DFS. My init thought was to DFS - TLE\MLE. And its editorial ...

  5. HackerRank "TBS Problem" ~ NPC

    It is marked as a NPC problem. However from the #1 code submission (https://www.hackerrank.com/Charl ...

  6. HackerRank Extra long factorials

    传送门 今天在HackerRank上翻到一道高精度题,于是乎就写了个高精度的模板,说是模板其实就只有乘法而已. Extra long factorials Authored by vatsalchan ...

  7. HackerRank "Lucky Numbers"

    Great learning for me:https://www.hackerrank.com/rest/contests/master/challenges/lucky-numbers/hacke ...

  8. HackerRank "Playing with numbers"

    This is 'Difficult' - I worked out it within 45mins, and unlocked HackerRank Algorithm Level 80 yeah ...

  9. HackerRank "The Indian Job"

    A sly knapsack problem in disguise! Thanks to https://github.com/bhajunsingh/programming-challanges/ ...

随机推荐

  1. Springmvc返回JSON乱码问号

    @RequestMapping(value="/book/getBook.do", produces = "text/html;charset=UTF-8") ...

  2. UICollectionView使用

    本文原文 原文转自 1.1. Collection View 全家福: UICollectionView, UITableView, NSCollectionView n   不直接等效于NSColl ...

  3. android获取当前行所属类和所属方法名

        第一种方法: String Method = Thread.currentThread().getStackTrace()[2].getMethodName();   第二种方法: priva ...

  4. RDLC系列之五 初试XAML

    本章只讲解xaml部分,其余都和winform下一样 1.xaml代码 <Window x:Class="RDLC.WPF.MainWindow" xmlns="h ...

  5. 4201 TortoiseSVN常用配置

    在Windows下推荐使用乌龟(Tortoise)SVN客户端. TortoiseSVN 是 Subversion 版本控制系统的一个免费开源客户端,可以超越时间的管理文件和目录.文件保存在中央版本库 ...

  6. Windows Phone:如何检查WMAppManifest中的Capability属性

    在Windows Phone应用中有一个应用程序清单(WMAppManifest.xml),其中对于不同的应用可以设定Capability来告知需要哪些特性或功能,详细内容可以参考官方文档: http ...

  7. 线程变量(ThreadLocal)的使用和测试

    ThreadLocal可以定义线程范围的变量,也可以称之为线程局部变量.与一般的变量的区别在于,生命周期是在线程范围内的. 也就是说某个类的某个对象(为清晰描述,以下称A对象)里面有个ThreadLo ...

  8. Jdeveloper 太慢 slowly

    https://blogs.oracle.com/shay/entry/is_your_jdeveloper_slow_it_sho http://bexhuff.com/2012/09/jdevel ...

  9. 小甲鱼第51讲:《__name__="__main__"、搜索路径和包》课后练习题

    测试题: 0. __name__属性指的是在调用该模块的时候调用的函数名称,方便在模块的被调用的时候,模块内部被调用的函数不会被运行. 1. 当模块作为主程序运行的时候,__name__属性的值是“_ ...

  10. nodeJs--模块module.exports与实例化方法;

    在nodejs中,提供了exports 和 require 两个对象,其中 exports 是模块公开的接口,require 用于从外部获取一个模块的接口,即所获取模块的 exports 对象.而在e ...