数的集合问题

  题目大意:给定你一个整数m,你只能用2的k次幂来组合这个数,问你有多少种组合方式?

  这一题一看,天啦太简单了,完全背包?是不是?

  不过的确这一题可以用完全背包来想,但是交题绝对是TLE,如果真的是完全背包的做法那我就不用等那么多天再发这个坑,这一题的确要用到点奇妙的思想。

  首先,我们忽略了这一题的最重要的一个条件,我们使用的数就是2次幂的,那么2次幂的数可以做什么呢?这就是一个数学问题了

  不过不要怕,这个数学问题也很好想,

    首先:任何一个奇数一定有1来组成,推论:任何偶数都可以只由除了1的数组成

    其次,任何一个偶数都可以由一个数左移1来得到(参考二进制)

  下面我们就用这两个数学结论来思考怎么简化递推。

  回到问题上来,完全背包会TLE的原因是出在在第二个循环的时候对j进行了过多的枚举,那么我们在用这两个结论的时候必须避开这一点,最好一步到位,所以我们必须把个数全部压在前一次的情况上,那么我们可首先用结论1,对于任何一个奇数,我们都可以用上一个偶数+1(组合数不变,因为只能加这个1),且这个集合不能由其他集合直接得到,那么我们就得到第一个递推公式

   dp[j]=dp[j-1]  当j=奇数

  现在用到第二个结论,因为我们的偶数可以从奇数得到,也可以从偶数得到,那么可以第一部分可以从dp[j-1]得到,另外一个部分就要思考结论2,因为我们只是左移,组合数是不变的,所以我们还可以从dp[j>>1]中得到另一部分的组合数,这样就避开了一个一个查找枚举i的背包了

  所以综上,状态转移方程为:

    dp[i]=dp[i-1]  当i是奇数

    dp[i]=dp[i-1]+dp[i>>1]  当i是偶数  

    (注意这一题只显示9个数字)

 #include <stdio.h>
#include <stdlib.h>
#define M 1000000000 long long Combinatories[]; int main(void)//这一题不能用完全背包,会超时
{
int N, i;
Combinatories[] = ;//这个地方要设置成1 for (i = ; i < ; i++)
{
if (i % == )
Combinatories[i] = Combinatories[i - ];
else
Combinatories[i] = Combinatories[i - ] + Combinatories[i >> ];
Combinatories[i] %= M;
} while (~scanf("%d", &N))
printf("%d\n", Combinatories[N] % M); return ;
}

DP:Sumsets(POJ 2229)的更多相关文章

  1. poj 2229 【完全背包dp】【递推dp】

    poj 2229 Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 21281   Accepted: 828 ...

  2. poj -2229 Sumsets (dp)

    http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...

  3. Sumsets(POJ 2229 DP)

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 15293   Accepted: 6073 Descrip ...

  4. poj 2229 Sumsets(dp)

    Sumsets Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 400000/200000K (Java/Other) Total Sub ...

  5. poj 2229 Sumsets(dp 或 数学)

    Description Farmer John commanded his cows to search . Here are the possible sets of numbers that su ...

  6. poj 2229 Sumsets(记录结果再利用的DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 将一个数N分解为2的幂之和共有几种分法? 题解: 定义dp[ i ]为数 i 的 ...

  7. POJ 2229 Sumsets【DP】

    题意:把n拆分为2的幂相加的形式,问有多少种拆分方法. 分析:dp,任何dp一定要注意各个状态来源不能有重复情况.根据奇偶分两种情况,如果n是奇数则与n-1的情况相同.如果n是偶数则还可以分为两种情况 ...

  8. poj 2229 Sumsets DP

    题意:给定一个整数N (1<= N <= 1000000),求出以 N为和 的式子有多少个,式子中的加数只能有2的幂次方组成 如5 : 1+1+1+1+1.1+1+1+2.1+2+2.1+ ...

  9. POJ 2229 Sumsets

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 11892   Accepted: 4782 Descrip ...

随机推荐

  1. bzoj 3437 斜率优化DP

    写题解之前首先要感谢妹子. 比较容易的斜率DP,设sum[i]=Σb[j],sum_[i]=Σb[j]*j,w[i]为第i个建立,前i个的代价. 那么就可以转移了. /**************** ...

  2. 抓包利器Fiddler

    1).Fiddler安装 a.下载地址: http://fiddler2.com/get-fiddler b.安装:省略(下一步...下一步即可) 2).Fiddler配置 a.允许远程计算机连接Fi ...

  3. JSP登录验证并显示信息

    加入C标签: 加入jstl.jar 和standard.jar加入Lib文件夹中 将c.tld放入WEB-Info文件夹中 index.jsp <%@ page language="j ...

  4. linux java cpu 100%

    1.用top找到最耗资源的进程id [ bin]# toptop - 16:56:14 up 119 days, 6:17, 7 users, load average: 2.04, 2.07, 2. ...

  5. Putty远程登录VMware虚拟机Linux(Ubuntu)

    安装SSH服务 Ubuntu默认并没有安装ssh服务,如果通过ssh链接ubuntu,需要自己手动安装ssh-server.判断是否安装ssh服务,可以通过如下命令进行: www.linuxidc.c ...

  6. C#面向对象中类的静态成员与非静态成员的区别

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  7. Spring实战学习笔记之SpEL表达式

            在Spring XML配置文件中装配Bean的属性和构造参数都是静态的,而在运行期才知道装配的值,就可以使用SpEL实现         SpEL表达式的首要目标是通过计算获得某个值. ...

  8. iOS 刚刚,几分钟前,几小时前,几天前,几月前,几年前

    - (NSString *)compareCurrentTime:(NSDate*) compareDate { NSTimeInterval timeInterval = [compareDate ...

  9. 如何做一名好的web安全工程师?

    在网络安全行业里面,web安全方向的人相对来说算是占大头,因为web安全初学阶段不像系统底层安全那么枯燥,而且成功hack目标网站的成就感相对也是比较强的. web安全工程师这个职位在甲方和乙方公司都 ...

  10. block与函数指针有什么区别

    block就是一个代码块,但是它的神奇之处在于在内联(inline)执行的时候(这和C++很像)还可以传递参数.同时block本身也可以被作为参数在方法和函数间传递,这就给予了block无限的可能. ...