Wormholes

Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES

题目大意:

    FJ童鞋家的农田里面有若干个虫洞,有一些虫洞是相连的,可以消耗一些时间爬过去(无向)。还有一些虫洞比较特殊,从一头爬到那一头之后时间会退后一些(有向)

    FJ希望通过爬虫洞(?)来时时间退后,从而能看到另外一个自己。根据输入的虫洞信息来判断是否可以实现FJ的愿望。

解题思路:

    说白了就是判断有向图有没有负环。Bellman-Ford算法和SPFA算法都可以用来判断是否有负环。

1.Bellman-Ford算法:

 For i= to |G.V|-
For each edge(u,v)属于G.E
RELAX(u,v,w)
For each edge(u,v)属于G.E //此循环用来判断负环
If (v.d>u.d+w(u,v)
Return FALSE;
Return TRUE;

2.SPFA算法:

  可以通过判断 顶点i进入队列的次数是否大于N-1来判断是否存在负环。

  PS:相对于没有负环的有N个顶点的有向图来说,一个顶点最多松弛N-1次即可达到最短路。

Code(SPFA):

 #include<stdio.h>
#include<string>
#include<iostream>
#include<limits.h>
#include<queue>
using namespace std;
int edge[][],times[],dis[];
bool vis[];
int N;
void init(int N)
{
for (int i=; i<=N; i++)
for (int j=; j<=N; j++)
edge[i][j]=INT_MAX;
}
bool SPFA(int begin)
{
for (int i=; i<=N; i++)
{
dis[i]=INT_MAX;
vis[i]=;
times[i]=;
}
queue<int> Q;
Q.push(begin);
dis[begin]=;
vis[begin]=;
times[begin]++;
while (!Q.empty())
{
begin=Q.front();
Q.pop();
vis[begin]=;
for (int j=; j<=N; j++)
if (j!=begin&&edge[begin][j]!=INT_MAX&&dis[j]>dis[begin]+edge[begin][j])
{
dis[j]=edge[begin][j]+dis[begin];
if (!vis[j])
{
Q.push(j);
vis[j]=;
times[j]++;
if (times[j]>=N) return ;
}
}
}
return ;
}
int main()
{
int T;
cin>>T;
while (T--)
{
int M,W;
cin>>N>>M>>W;
init(N);
for (int i=; i<=M; i++)
{
int x1,x2,x3;
scanf("%d%d%d",&x1,&x2,&x3);
if (x3<edge[x1][x2])
edge[x1][x2]=edge[x2][x1]=x3;
}
for (int i=; i<=W; i++)
{
int x1,x2,x3;
scanf("%d%d%d",&x1,&x2,&x3);
edge[x1][x2]=-x3;
}
bool ok=SPFA();
if (ok) printf("NO\n");
else printf("YES\n");
}
return ;
}

POJ3259——Wormholes(Bellman-Ford+SPFA)的更多相关文章

  1. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  2. POJ3259 :Wormholes(SPFA判负环)

    POJ3259 :Wormholes 时间限制:2000MS 内存限制:65536KByte 64位IO格式:%I64d & %I64u 描述 While exploring his many ...

  3. poj3259 Wormholes【Bellman-Ford或 SPFA判断是否有负环 】

    题目链接:poj3259 Wormholes 题意:虫洞问题,有n个点,m条边为双向,还有w个虫洞(虫洞为单向,并且通过时间为倒流,即为负数),问你从任意某点走,能否穿越到之前. 贴个SPFA代码: ...

  4. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  5. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  6. 蓝桥杯 algo_5 最短路 (bellman,SPFA)

    问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个 ...

  7. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  8. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  9. POJ 3259 Wormholes Bellman题解

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/.未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  10. poj3259 bellman——ford Wormholes解绝负权问题

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 35103   Accepted: 12805 Descr ...

随机推荐

  1. 线程间操作无效: 从不是创建控件“label4”的线程访问它。

    //主线程 public delegate void UpdateMessage(string mes); public void UpdatePortMessage(string mes) { th ...

  2. Centos 6.5 配置nginx服务

    官方网站:http://nginx.org最新版本:1.7.11官方文档:http://nginx.org/en/docs/ 一.安装NGINX查看当前centos版本: #cat /etc/redh ...

  3. Android 核心组件 Activity 之上

    核心组件的特征 1. 必须继承自特定的类(Activity 或者 Activity的子类) 2. 必须注册: 通常是AndroidManifest.xml的 <application> 中 ...

  4. 怎么在spring官网上下载spring的jar包, 源代码和文档?

    现在 http://repo.spring.io/release/org/springframework/spring/第一种,简单粗暴直接 1 http://repo.springsource.or ...

  5. 通过 SuperObject 生成 json string

    (* { "name": "Henri Gourvest", /* this is a comment */ "vip": true, &q ...

  6. java环境搭建的问题

    本人用eclipse开发,首先在java官网中下载最新版本的jdk,jdk的版本一定要与eclipse版本位数相同,否则会提示错误“Java was started but returned exit ...

  7. 《C和指针》 读书笔记 -- 第8章 数组

    1.在C中,数组名的值是一个指针常量而不是指针变量,也就是数组第一个元素的地址. 2.数组和指针的区别: 声明一个数组时,编译器将根据声明所指定的元素数量为数组保留内存空间,然后再创建数组名,它的值是 ...

  8. realloc() 用法详解

    原型:extern void *realloc(void *mem_address, unsigned int newsize); 语法:指针名=(数据类型*)realloc(要改变内存大小的指针名, ...

  9. s3c-u-boot-1.1.6源码分析之一start.s

    定位到\s3c-u-boot-1.1.6\cpu\s3c64xx\start.s,打开该文件 /* * armboot - Startup Code for S3C6400/ARM1176 CPU-c ...

  10. Linux C程序的编译过程

    Linux C程序的编译过程 学习一门语言程序,本人觉得还是得学习它的编译规则,现在,通过小例子小结下自己对C编译的认识. /*test.c     了解C程序的编译*/ #include <s ...