P<=10一开始是吓死我了

后来想到这就是一个经典的决策单调性解决1d1d动态规划的题目

像决策单调性完全可以打表找规律,这里有一篇严谨的证明https://www.byvoid.com/blog/noi-2009-poet

关于1d1d动归的优化可以看《1d1d动态规划优化初步》

注意可能会爆longlong,所以用extended计算

 type node=record
l,r,x:longint;
end; var q:array[..] of node;
f:array[..] of extended;
s:array[..] of longint;
x,h,r,i,n,l,p,tt:longint;
ss:string; function pow(x:extended):extended;
var i:longint;
begin
pow:=;
for i:= to p do
pow:=pow*x;
end; function calc(j,i:longint):extended;
begin
exit(f[j]+pow(abs(s[i]-s[j]+i-j--l)));
end; function max(a,b:longint):longint;
begin
if a>b then exit(a) else exit(b);
end; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; procedure update(i:longint);
var l,t,m,ans:longint;
begin
if calc(i,n)>calc(q[r].x,n) then exit;
while (i<q[r].l) and (calc(i,q[r].l)<calc(q[r].x,q[r].l)) do dec(r); l:=max(i+,q[r].l);
t:=q[r].r;
ans:=min(n,q[r].r+);
while l<=t do
begin
m:=(l+t) shr ;
if calc(i,m)<calc(q[r].x,m) then
begin
ans:=m;
t:=m-;
end
else l:=m+;
end;
q[r].r:=ans-;
inc(r);
q[r].x:=i;
q[r].l:=ans;
q[r].r:=n;
end; begin
readln(tt);
while tt> do
begin
dec(tt);
readln(n,l,p);
s[]:=;
for i:= to n do
begin
readln(ss);
x:=length(ss);
s[i]:=s[i-]+x;
end;
h:=;
r:=;
q[].x:=;
q[].l:=;
q[].r:=n;
for i:= to n do
begin
while i>q[h].r do inc(h);
f[i]:=calc(q[h].x,i);
update(i);
end;
if f[i]<=1e18 then writeln(trunc(f[i])) //注意这里trunc不能0:
else writeln('Too hard to arrange');
writeln('--------------------');
end;
end.

bzoj1563的更多相关文章

  1. [bzoj1563][诗人小g]

    bzoj1563 思路 首先考虑\(n^2\)的暴力dp,用sum[i]表示前i句话的长度总和.f[i]表示前i句话最小的不协调度之和.转移的时候考虑枚举前面的每个点,找到转移的最优秀的那个点. 然后 ...

  2. bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)

    目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...

  3. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  4. [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)

    模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...

  5. bzoj1563: [NOI2009]诗人小G

    Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...

  6. BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)

    设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...

  7. 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)

    传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...

  8. BZOJ1563:[NOI2009]诗人小G(决策单调性DP)

    Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...

  9. BZOJ1563 NOI2009 诗人小G【决策单调性优化DP】

    LINK 因为是图片题就懒得挂了 简要题意:有n个串,拼接两个串需要加一个空格,给你l和p,问你拼接后每个串的总长减l的绝对值的p次方的最小值 首先打表发现一下这题是决策单调的对于所有数据都成立就当他 ...

随机推荐

  1. LintCode-Word Search II

    Given a matrix of lower alphabets and a dictionary. Find all words in the dictionary that can be fou ...

  2. 【工具】NS2安装记录

    献给同样为了NS2抓破了头皮的同志们. 1, Get Started: http://www.isi.edu/nsnam/ns/ns-build.html#allinone Build by piec ...

  3. java url中文参数乱码问题

    http://www.blogjava.net/jerry-zhaoj/archive/2009/07/16/286993.html 转 JAVA 中URL链接中文参数乱码的处理方法JAVA 中URL ...

  4. 2875: [Noi2012]随机数生成器 - BZOJ

    DescriptionInput 包含6个用空格分割的m,a,c,X0,n和g,其中a,c,X0是非负整数,m,n,g是正整数. Output 输出一个数,即Xn mod gSample Input ...

  5. C#中两个日期类型相减得到天数

    protected int GetDuration(DateTime start, DateTime finish) { return (finish - start).Days; } 直接相减得到的 ...

  6. uva 10617

    当s[i] = s[j]   dp[i][j] = 1+dp[i+1][j-1]+dp[i+1][j]+dp[i][j-1]-dp[i+1][j-1] = 1+dp[i][j-1]+dp[i+1][j ...

  7. Unity手游:自动寻路Navmesh 跳跃 攀爬 斜坡

    原地址:http://dong2008hong.blog.163.com/blog/static/46968827201403114644210/ 步骤 1.在场景中摆放各种模型,包括地板,斜坡,山体 ...

  8. 如何用 ANTLR 4 实现自己的脚本语言?

    ANTLR 是一个 Java 实现的词法/语法分析生成程序,目前最新版本为 4.5.2,支持 Java,C#,JavaScript 等语言,这里我们用 ANTLR 4.5.2 来实现一个自己的脚本语言 ...

  9. c#操作剪切板

    C#定义了一个类System.Windows.Forms.Clipboard来简化剪切板操作,这个类有一个静态方法,主要有: Clear 清除剪切板中的所有数据: ContainsData,Conta ...

  10. 求和问题总结(leetcode 2Sum, 3Sum, 4Sum, K Sum)

    转自  http://tech-wonderland.net/blog/summary-of-ksum-problems.html 前言: 做过leetcode的人都知道, 里面有2sum, 3sum ...